TI-15
A Guide for Teachers

Developed by
Texas Instruments Incorporated

Activities developed by
Jane Schielack
About the Author

Jane Schielack is an Associate Professor of Mathematics Education in the Department of Mathematics at Texas A&M University. She developed the Activities section and assisted in evaluating the appropriateness of the examples in the How to Use the TI-15 section of this guide.

Important Notice Regarding Book Materials

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an “as-is” basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this book. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

Note: Using calculators other than the TI-15 may produce results different from those described in these materials.

Permission to Reprint or Photocopy

Permission is hereby granted to teachers to reprint or photocopy in classroom, workshop, or seminar quantities the pages or sheets in this book that carry a Texas Instruments copyright notice. These pages are designed to be reproduced by teachers for use in classes, workshops, or seminars, provided each copy made shows the copyright notice. Such copies may not be sold, and further distribution is expressly prohibited. Except as authorized above, prior written permission must be obtained from Texas Instruments Incorporated to reproduce or transmit this work or portions thereof in any other form or by any other electronic or mechanical means, including any information storage or retrieval system, unless expressly permitted by federal copyright law.

Send inquiries to this address:

Texas Instruments Incorporated
7800 Banner Drive, M/S 3918
Dallas, TX 75251
Attention: Manager, Business Services

If you request photocopies of all or portions of this book from others, you must include this page (with the permission statement above) to the supplier of the photocopying services.
Table of Contents

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Teacher Guide</td>
<td>v</td>
</tr>
<tr>
<td>About the TI-15</td>
<td>vi</td>
</tr>
<tr>
<td>Activities</td>
<td>1</td>
</tr>
<tr>
<td>Patterns in Percent</td>
<td>2</td>
</tr>
<tr>
<td>The $%$ Key</td>
<td></td>
</tr>
<tr>
<td>Fraction Forms</td>
<td>6</td>
</tr>
<tr>
<td>Auto and Manual Mode</td>
<td></td>
</tr>
<tr>
<td>Comparing Costs</td>
<td>11</td>
</tr>
<tr>
<td>Division with quotient/remainder, fraction, or decimal result</td>
<td></td>
</tr>
<tr>
<td>Number Shorthand</td>
<td>15</td>
</tr>
<tr>
<td>Scientific Notation</td>
<td></td>
</tr>
<tr>
<td>Related Procedures</td>
<td>20</td>
</tr>
<tr>
<td>Constant operations</td>
<td></td>
</tr>
<tr>
<td>In the Range</td>
<td>24</td>
</tr>
<tr>
<td>Rounding</td>
<td></td>
</tr>
<tr>
<td>The Value of Place Value</td>
<td>29</td>
</tr>
<tr>
<td>Place value</td>
<td></td>
</tr>
<tr>
<td>What’s the Problem?</td>
<td>34</td>
</tr>
<tr>
<td>Number sentences, Problem solving</td>
<td></td>
</tr>
<tr>
<td>How to Use the TI-15 (continued)</td>
<td></td>
</tr>
<tr>
<td>12 Problem Solving: Auto Mode</td>
<td>94</td>
</tr>
<tr>
<td>13 Problem Solving: Manual Mode</td>
<td>100</td>
</tr>
<tr>
<td>14 Place Value</td>
<td>106</td>
</tr>
<tr>
<td>Appendix A</td>
<td>A-1</td>
</tr>
<tr>
<td>Quick Reference to Keys</td>
<td></td>
</tr>
<tr>
<td>Appendix B</td>
<td>B-1</td>
</tr>
<tr>
<td>Display Indicators</td>
<td></td>
</tr>
<tr>
<td>Appendix C</td>
<td>C-1</td>
</tr>
<tr>
<td>Error Messages</td>
<td></td>
</tr>
<tr>
<td>Appendix D</td>
<td>D-1</td>
</tr>
<tr>
<td>Support, Service, and Warranty</td>
<td></td>
</tr>
</tbody>
</table>
About the Teacher Guide

How the Teacher Guide is Organized
This guide consists of two sections: Activities and How to Use the TI-15. The Activities section is a collection of activities for integrating the TI-15 into mathematics instruction. How To Use the TI-15 is designed to help you teach students how to use the calculator.

Activities
The activities are designed to be teacher-directed. They are intended to help develop mathematical concepts while incorporating the TI-15 as a teaching tool. Each activity is self-contained and includes the following:

- An overview of the mathematical purpose of the activity.
- The mathematical concepts being developed.
- The materials needed to perform the activity.
- A student activity sheet.

How to Use the TI-15
This section contains examples on transparency masters. Chapters are numbered and include the following:

- An introductory page describing the calculator keys presented in the examples, the location of those keys on the TI-15, and any pertinent notes about their functions.
- Transparency masters following the introductory page provide examples of practical applications of the key(s) being discussed. The key(s) being discussed are shown in black on an illustration of the TI-15 keyboard.

Things to Keep in Mind

- While many of the examples on the transparency masters may be used to develop mathematical concepts, they were not designed specifically for that purpose.
- For maximum flexibility, each example and activity is independent of the others. Select the transparency master that emphasizes the key your students need to use to develop the mathematical concepts you are teaching. Select an appropriate activity for the mathematical concept you are teaching.
- If an example does not seem appropriate for your curriculum or grade level, use it to teach the function of a key (or keys), and then provide relevant examples of your own.
- To ensure that everyone starts at the same point, have students reset the calculator by pressing \(\text{\textasciitilde} \) and \(\text{\textasciitilde} \) simultaneously or by pressing \(\text{MODE} \), selecting RESET, selecting \(\text{Y} \) (yes), and then pressing \(\text{\textasciitilde} \).

How to Order Additional Teacher Guides
To place an order or to request additional information about Texas Instruments (TI) calculators, call our toll-free number:

1-800-TI-CARES (1-800-842-2737)

Or use our e-mail address:

ti-cares@ti.com

Or visit the TI calculator home page:

http://www.ti.com/calc

© 2000 TEXAS INSTRUMENTS INCORPORATED

TI-15: A Guide for Teachers iv
Two-Line Display
The first line displays an entry of up to 11 characters. Entries begin on the top left. If the entry will not fit on the first line, it will wrap to the second line. When space permits, both the entry and the result will appear on the first line.

The second line displays up to 11 characters. If the entry is too long to fit on the first line, it will wrap to the second line. If both entry and result will not fit on the first line, the result is displayed right-justified on the second line. Results longer than 10 digits are displayed in scientific notation.

If an entry will not fit on two lines, it will continue to wrap; you can view the beginning of the entry by scrolling up. In this case, only the result will appear when you press \[= \].

Display Indicators
Refer to Appendix B for a list of the display indicators.

Error Messages
Refer to Appendix C for a listing of the error messages.

Order of Operations
The TI-15 uses the Equation Operating System (EOS™) to evaluate expressions. The operation priorities are listed on the transparency master in Chapter 1, Display, Scrolling, Order of Operations, and Parentheses.

Because operations inside parentheses are performed first, you can use \[(\] or \[) \] to change the order of operations and, therefore, change the result.

Menus
Two keys on the TI-15 display menus: \[\text{Mode} \] and \[\text{Frac} \].

Press \[\uparrow \] or \[\downarrow \] to move down or up through the menu list. Press \[\text{or } \] to move the cursor and underline a menu item. To return to the previous screen without selecting the item, press \[\text{Back} \]. To select a menu item, press \[\text{Enter} \] while the item is underlined.

Previous Entries
After an expression is evaluated, use \[\uparrow \] and \[\downarrow \] to scroll through previous entries and results, which are stored in the TI-15 history.

Problem Solving \(\text{HOME} \)
The Problem Solving tool has three features that students can use to challenge themselves with basic math operations or place value.

Problem Solving (Auto Mode) provides a set of electronic exercises to challenge the student’s skills in addition, subtraction, multiplication, and division. Students can select mode, level of difficulty, and type of operation.

Problem Solving (Manual Mode) lets students compose their own problems, which may include missing elements or inequalities.

Problem Solving (Place Value) lets students display the place value of a specific digit, or display the number of ones, tens, hundreds, thousands, tenths, hundredths, or thousandths in a given number.
About the TI-15 (Continued)

Resetting the TI-15

Pressing \(\text{ canc } \) and \(\text{ shift } \) simultaneously or pressing \(\text{ mode } \), selecting \(\text{ reset } \), selecting \(\text{ y } \) (yes), and then pressing \(\text{ enter } \) resets the calculator.

Resetting the calculator:

- Returns settings to their defaults: Standard notation (floating decimal), mixed numbers, manual simplification, Problem Solving Auto mode, and Difficulty Level 1 (addition) in Problem Solving.

- Clears pending operations, entries in history, and constants (stored operations).

Automatic Power Down™ (APD™)

If the TI-15 remains inactive for about 5 minutes, Automatic Power Down (APD) turns it off automatically. Press \(\text{ cancel } \) after APD. The display, pending operations, settings, and memory are retained.
Activities

Patterns in Percent 2
Fraction Forms 6
Comparing Costs 11
Number Shorthand 15
Related Procedures 20
In the Range 24
The Value of Place Value 29
What’s the Problem? 34
Patterns in Percent

Grades 4 - 6

Overview

Students will use the [%] key to collect data about percentages of a given number. They will organize the data and look for patterns in percents. (For example, 10% of 20 is twice as much as 5% of 20.)

Math Concepts

• multiplication
• equivalent fractions, decimals, and percents

Materials

• TI-15
• pencil
• student activity (page 4)

Introduction

1. After students use manipulatives to develop the meaning of percent (1% = 1 part out of 100 parts), have them explore what happens when they press [%] on the calculator.

2. Present the following scenario to students:

Metropolis East (M.E.) and Metropolis West (M.W.) are neighboring cities. The sales tax in M.E. is 10%, but the sales tax in M.W. is only 5%. Collect data and display your results for each percent in a table to compare the amounts of money you would pay for tax on various items in each city.

3. Have students make conjectures about percent based on the patterns they observe. Students can then use manipulatives to verify their conjectures.

Examples:

• Students may observe that for every item, 10% of its price is twice as much as 5% of its price.
• Students may observe that it is easy to estimate 10% of a whole number by using place value and looking at the digits to the right of the ones place.

Collecting and Organizing Data

To guide students in organizing their data to bring out patterns, ask questions such as:

• How could you organize your data to compare the 5% tax rate to the 10% tax rate?
• Why would it be useful to keep 5% in the left-hand column of one table all the way down and just change the total quantity?

When a student enters a 6 [%], the TI-15 displays 6%. Then, when the student presses [%], the display changes to 6% = 0.06 to show that 6% is another way to write 0.06 or 6/100.

You will need to show students how to use multiplication on the TI-15 to express the percent of a given quantity. For example, to show 10% of $20:

1. Enter 10.
2. Press [%] [x].
3. Enter 20; press [%].

Students can verify the calculator display of 2 by using manipulatives to show 10% of $20 = $2.
Patterns in Percent (Continued)

• How can you make a similar table for 10% to compare your data?

• What do you think would happen if you order the total quantity amounts from least to greatest?

• How else might you organize your data to compare the two tax rates and find patterns in the percents?

Analyzing Data and Drawing Conclusions

To focus students’ attention on looking for patterns in their data, ask questions such as:

• How are the percentages (amounts of tax) in your 5% table like the amounts in the 10% table?

• How does 5% of a $20 item compare to 5% of a $10 item?

• How does 10% of a $20 item compare to 10% of a $10 item?

• How does 10% of the cost of an item compare to the total cost of the item?

• What conjectures can you make about finding 10% of a number?

• What conjectures can you make about finding 5% of a number?

• How can you use manipulatives to test your conjectures?

Continuing the Investigation

Students can create other percent scenarios to investigate patterns in percents. For example, ask students:

• What happens if you increase the sales tax by one percentage point each day?

• How does the tax on a $20 item change each day?

• How does the tax on a $40 item change each day?

• How do the taxes on the 2 items compare?
Patterns in Percent

Collecting and Organizing Data

Use your calculator to collect data about percent, organize it in the table below, and then look for patterns.

<table>
<thead>
<tr>
<th>Cost of Item</th>
<th>Amount of Tax in Metropolis West</th>
<th>Amount of Tax in Metropolis East</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patterns in Percent

Analyzing Data and Drawing Conclusions

1. What patterns do you see in your tables?

__

__

__

2. What conjectures can you make from these patterns?

__

__

__

3. Repeat the activity with a different percent in the left column and compare your results.

__

__

__

4. Repeat the activity, changing the percents in the left column while keeping the total quantity constant. Now what patterns do you see? What conjectures can you make?

__

__

__

__
Fraction Forms

Grades 4 - 6

Overview
Students will compare the results of using division to create fractions under the different mode settings for fraction display and make generalizations from the patterns they observe.

Math Concepts
• division
• multiplication
• common factors
• equivalent fractions

Materials
• TI-15
• pencil
• student activity (page 9)

Introduction

1. Present students with a problem such as:

 In a small cafe, there are 6 cups of sugar left in the pantry to put into 4 sugar bowls. If you want them all to contain the same amount of sugar, how much sugar goes into each sugar bowl?

2. Have students present their solutions to the problem. Encourage them to find as many ways to represent the solution as possible.

 Examples:
 • By thinking of using a \(\frac{1}{4}\) cup scoop to fill the bowls, each bowl would receive 6 scoops, or \(6/4\) cups of sugar.
 • By thinking of separating each cup into half cups, there would be 12 half cups, and each bowl would receive 3 half cups, or \(3/2\) cups of sugar.
 • If a 1-cup measuring cup was used first, each bowl would receive 1 cup of sugar, then the last two cups could be divided into eight fourths to give \(1\frac{3}{4}\) cups per bowl.
 • The last two cups could be divided into 4 halves to give \(1\frac{1}{2}\) cups per bowl.

3. Have students identify the operation and record the equation that they could use with the calculator to represent the action in the situation (6 cups ÷ 4 bowls = number of cups per bowl).

Refer to page 45 for detailed information about mode settings on the TI-15.

Division can be represented by \(6 \div 4\) or \(6/4\) (entered on the calculator as \(6 \div 4\)). In this activity, the fraction representation is used.
4. Have students enter the division to show the quotients in fraction form, and record the resulting displays.

5. Have students explore the quotient with the different combinations of settings and discuss the different displays that occur. If necessary, have them use manipulatives to connect the meanings of the four different fraction forms.

6. Have students, working in groups of four, choose a denominator and record the different fraction forms on the activity sheet provided.

7. Have students share their results, look for patterns, and make generalizations.

Collecting and Organizing Data

To guide students in creating data that will exhibit patterns in the fraction quotients, ask questions such as:

- **What denominator did you choose to explore with? Why?**

- **What denominators do you get with the settings \(\frac{n}{d} \text{ man} \)? With the settings \(\frac{n}{d} \text{ auto} \)?**

- **What denominators do you get with the settings \(\frac{n}{d} \text{ man} \)? With the settings \(\frac{n}{d} \text{ auto} \)?**

- **What denominator are you going to choose to explore with next?**

Example:
After exploring with denominators of 2 and 3, you might suggest exploring with a denominator of 6 and comparing results.

- **How can you organize your results to look for patterns?**

Example:
Continuing to increase the numerators by 1 each time.
Analyzing Data and Drawing Conclusions

To focus students’ attention on the patterns in their fractions and the relationship of these patterns to the denominators, ask questions such as:

- **What patterns do you see in your results?**

 Example:

 When a denominator of 4 is used in the \(\frac{n}{d} \) _auto_ column, every fourth number is a whole number.

- **How do the results of using a denominator of 2 compare with the results of using a denominator of 4?**

- **How does a denominator of 5 compare to a denominator of 10?**

- **Which other denominators seem to be related?**

 Example:

 The pattern using a divisor of 6 is related to the patterns for 2 and 3.

- **What pattern do you see in the related denominators?**

 Example:

 They are related as factors and multiples.

Continuing the Investigation

Have students brainstorm situations in which they would prefer to use each of the combinations of settings of fraction forms.

Example:

- When working with probabilities that may need to be added, using the \(\frac{n}{d} \) _man_ settings would keep the denominators of the probabilities all the same and make mental addition easier.

- In a situation where estimated results are close enough, using the \(\frac{n}{d} \) _auto_ settings would make it easier to see quickly the whole number component of the result and whether the additional fraction part was more or less than \(\frac{1}{2} \).
Collecting and Organizing Data

1. Have each person in your group set his/her calculator to one of the following combinations of modes for fraction display. (Each person should choose a different setting.)
 - improper/manual simp
 - improper/auto simp
 - mixed number/manual simp
 - mixed number/auto simp

2. Select a denominator: ________________

3. Use this denominator with several numerators and record each person’s results in the table below.

<table>
<thead>
<tr>
<th>Numerator</th>
<th>Denominator</th>
<th>(\frac{n}{d}) Man</th>
<th>(\frac{n}{d}) Auto</th>
<th>(\frac{U}{d}) Man</th>
<th>(\frac{U}{d}) Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fraction Forms (Continued)

Analyzing Data and Drawing Conclusions

1. What patterns do you see?

__
__
__

2. What generalizations can you make?

__
__
__

3. Try the activity again with a different denominator and compare your results with the two denominators.

__
__
__
Comparing Costs Grades 3 - 5

Overview
Students will solve a problem using division with an integer quotient and remainder, division with the quotient in fraction form, and division with the quotient in decimal form and compare the results.

Math Concepts
- division
- multiplication
- fractions
- decimals

Materials
- TI-15
- pencil
- student activity (page 14)

Introduction
1. Introduce the following problem:

 The maintenance department has determined that it will cost $.40 per square yard to maintain the district's soccer field each year. The soccer field is 80 yards wide and 110 yards long. The six schools that play on the field have decided to split the cost evenly. How much should each school contribute to the soccer field maintenance fund this year?

2. Have students use the calculator to solve this problem in three ways:
 - Finding an integer quotient and remainder.
 - Finding the quotient in fraction form.
 - Finding the quotient in decimal form.

Collecting and Organizing Data
Students should record their procedures and results on the Student Activity page. To help them focus on their thinking, ask questions such as:

- What did you enter into the calculator to solve the problem?

Example:
A student may have entered 80 \times 110 \text{ Enter} to determine the area of the soccer field, then entered \(\times 0.40 \) \text{ Enter} to find the total maintenance cost, then \(\div 6 \) \text{ Enter} to find the cost for each school in fraction or decimal form.

To display an integer quotient with a remainder, use the \(\text{Int} \) key.

To display a quotient in fraction form, press \(\text{Mode} \) to select n/d, then use the \(\text{S} \) key.

To display a quotient in decimal form, press \(\text{Mode} \) to select \(\), then use the \(\text{2} \) key.
Comparing Costs (Continued)

- Could you have solved the problem more efficiently? How?

 Example:
 A student may see that 80 x 110 could be done mentally, and the key presses could be simplified to \(8800 \times 4 \div 6\) Enter.

- How are your procedures alike for each type of solution?

 Examples:
 They all involve finding how many square yards in the soccer field; they all involve multiplication and division.

- How are they different?

 You use different keys to tell the calculator in what form you want the answer displayed.

Analyzing Data and Drawing Conclusions

To guide students in the analysis of their data, ask questions such as:

- How are your solutions in the three forms alike?

 They all have a whole number component of 586.

- How are your three solutions different?

 The remainder form just tells how many dollars are left over. The fraction and decimal forms tell how much more than $586 each school has to pay.
Comparing Costs (Continued)

- **What happens if you multiply each solution by 6 to check it?**

For the remainder form, you have to multiply 586 x 6 and then add 4 to get the total cost of $3520. You can multiply 586/6 x 6 in fraction form to get $3520. If you enter **586.666667 x 6** and press **[ENTER]**, you get **3520**, but that doesn’t make sense because 6 x 7 doesn’t end in a 0!

If you enter **586.66667**, then fix the decimal quotient to hundredths since it is money, and then find 586.67 x 6, you still get 3520.00, which still doesn’t make sense because 6 x 7 = 42. If you clear the calculator and enter **586.67 x 6**, and press **[ENTER]**, then the display reads **3520.02**, which does make sense.

- **As a school, which form of the quotient would you want to use?**

Responses may vary. Some students may want to use the decimal form, since it is the closest to the representation of money. Some students may want to use the integer quotient and remainder form and suggest that the Central Office pay the $4.00 remainder.

Although the fraction form of the quotient describes the exact quantity that each school should pay, most students will recognize, by comparing it to the decimal form, that the fraction form is not easily translated into money.
Comparing Costs

Collecting and Organizing Data

The Maintenance department has determined that it will cost $4.00 per square yard to maintain the district’s soccer field each year. The soccer field is 80 yards wide and 110 yards long. The 6 schools that play on the field have decided to split the cost evenly. How much should each school contribute to the soccer field maintenance fund this year?

1. Use division with an integer quotient and remainder:

2. Use division with a quotient in fraction form:

3. Use division with a quotient in decimal form:

Analyzing Data and Drawing Conclusions

Write a short paragraph comparing the three solutions.
Number Shorthand: Scientific Notation

Grades 5 - 6

Overview

Students will use patterns created on the calculator with the constant operation (Op1 or Op2) to develop an understanding of scientific notation.

Math Concepts
• multiplication
• powers of 10
• exponents

Materials
• TI-15
• pencil
• student activity (page 18)

Introduction

1. Have students review the pattern created when using 10 as a factor.

 Example:
 1 x 10 = 10
 2 x 10 = 20
 3 x 10 = 30
 10 x 10 = 100

2. Ask students:

 Based on this pattern, what do you think happens when we multiply by 10 over and over again?

3. After students share their conjectures, have them use Op to test their conjectures. As students press Op, have them record the resulting displays on the Student Activity page.

4. When students reach the point where the left-hand counter is no longer displayed, ask them what they think has happened to the calculator. (The product has become so large that there is not room to display both the product and the counter, so the counter has been dropped.)

 Have students continue to record the counter data, even though it no longer shows on the calculator.

5. When the left-hand counter reappears, have students describe what has happened to the display of the product. (It has been replaced with a right-hand display of scientific notation: for example, 1x10^11.)

To multiply repeatedly by 10, enter:

1. Op × 10 Op

 This “programs” the constant operation.
 2. Enter 1 as the starting factor.

 When you press Op the first time, the calculator performs the operation 1 x 10 and the display shows:

 \[1 \times 10^1\]

 The 1 represents using x 10 one time.
6. Have students continue to press \(\text{\textasciitilde} \) and record the results.

7. Have students analyze their data and make some conclusions about the scientific notation display.

For example, \(1 \times 10^{11} \) represents the product:
\[
1 \times 10 \times 10.
\]

Explain to students that exponential or scientific notation is a shorthand for repeated factors:
\[
1 \times 10^{11}.
\]

8. Have students continue to explore the use of scientific notation to represent repeated multiplication by 10 with other starting factors. (For example, using 2 as the starting factor, the display \(2 \times 10^{11} \) represents multiplying 2 by 10 eleven times, or \(2 \times 10^{11} \).

Collecting and Organizing Data

To focus students’ attention on the relevant changes in the calculator’s display, ask questions such as:

- **What does the display \(3 \enspace 1000 \) mean?**
- **When did the counter on the left disappear? Why do you think that happened?**
- **When did the counter on the left reappear? What else has changed?**

The product looks different. It changed from \(1000000000 \) to \(1 \times 10^{10} \).

- **What do the displays look like after this change takes place?**

The \(1 \times 10 \) stays the same, but the right-hand number (the exponent) goes up one each time \(\text{\textasciitilde} \) is pressed, and it matches the left-hand counter.
Analyzing Data and Drawing Conclusions

To focus students’ attention on the connection between the repeated factors of 10 and the scientific notation display, ask questions such as:

- **What patterns do you see in your products before the counter disappears?**

 They all have a 1 followed by the same number of zeroes as factors of 10 that were used in the product.

- **If you continued this pattern, what would the product be at the point where the display of the product changed? How is the product related to the new display?**

 For example, 1×10^{11} is in the place where the product should be 100,000,000,000. The display 1×10^{11} represents the product 1×10^{11}.

- **What happens if you use 2 as the starting factor and multiply by 10 repeatedly?**

 The displays are the same, except the first number in all the products is 2. The display 2×10^{11} represents the product 2×10^{11}.

Continuing the Investigation

Students can use other powers of 10 as the repeating factor, record the results in the table, and look for patterns. For example, using 100 as the repeating factor causes the exponent part of the scientific notation display to increase by 2 every time [09] is pressed.

Students can use a starting factor of 10 or greater, record the results in the table, and look for patterns. For example, using 12 as the starting factor soon results in a display like $12 \ 1.2 \times 10^{13}$, where the exponent part of the display is one more than the number of times 10 has been used as a factor.
Collecting and Organizing Data

Program the constant operation feature on your calculator to multiply by 10. Record the results in the table below for each time you press \[0\text{\it{D}}\].

<table>
<thead>
<tr>
<th>Number of Times Used as a Factor</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(starting factor)</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Number Shorthand: Scientific Notation

Analyzing Data and Drawing Conclusions

1. What patterns do you see?

__
__
__

2. What does it mean when the right-hand display changes?
(For example, \(1 \times 10^{15}\).)

__
__
__

3. Try the activity again with another multiple of 10 and compare your results.

__
__
__
Related Procedures

Overview
Students will use the two constant operations (\(\text{Op1}\) and \(\text{Op2}\)) to compare the results of different mathematical procedures and determine how they are related.

Math Concepts
- whole numbers
- addition, subtraction, multiplication, division
- fractions (Grades 5-6)
- decimals (Grades 5-6)

Materials
- TI-15
- pencil
- student activity (page 23)

Introduction
1. Have students program \(\text{Op1}\) with +2 and \(\text{Op2}\) with –2.

2. Have students enter 8 on their calculators, press \(\text{Op1}\), and read the output (1 10, which means adding 2 once to 8 gives 10).

3. Have students press \(\text{Op2}\) to apply the second constant operation to the output of the first constant operation, and then read the output (1 8, which means subtracting 2 once from 10 gives 8).

4. Have students continue this process with various numbers as their first input. Discuss their results. (Pressing \(\text{Op1}\) and then \(\text{Op2}\) always gets you back to the first input number, which means \(\text{Op1}\) and \(\text{Op2}\) are inverse procedures.)

5. Challenge students to find more pairs of procedures for \(\text{Op1}\) and \(\text{Op2}\) that will follow the same pattern and record their investigations using the Related Procedures student activity page.

To use \(\text{Op1}\) and \(\text{Op2}\):
1. Press \(\text{Op1}\) (or \(\text{Op2}\)).
2. Enter the operation and the number (for example, 2).
3. Press \(\text{Op1}\) (or \(\text{Op2}\)).
4. Enter the number to which you want to apply the constant operation.
5. Press \(\text{Op1}\) (or \(\text{Op2}\)). The display will have a 1 on the left and the result on the right. If you press \(\text{Op1}\) (or \(\text{Op2}\)) again, the calculator will apply the constant operation to the previous output and display a 2 at the left, indicating the constant operation has been applied twice to the original input.
Related Procedures (Continued)

Collecting and Organizing Data
As students use \(\mathbf{\text{op1}} \) and \(\mathbf{\text{op2}} \), have them record their results in the appropriate tables on the Student Activity page. For example, if a student is exploring the relationship between \(\times 2 \) and \(\div 2 \), the tables might look something like this:

Table for \(\mathbf{\text{op1}} \)

<table>
<thead>
<tr>
<th>Input</th>
<th>Procedure</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\times 2)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>(\times 2)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>(\times 2)</td>
<td>6</td>
</tr>
</tbody>
</table>

Table for \(\mathbf{\text{op2}} \)

<table>
<thead>
<tr>
<th>Input</th>
<th>Procedure</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\div 2)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(\div 2)</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>(\div 2)</td>
<td>3</td>
</tr>
</tbody>
</table>

Analyzing Data and Drawing Conclusions
Ask students:

- **What patterns do you see in your data?**

- **Are the procedures inverses of each other? How do you know?**

 If the output number for \(\mathbf{\text{op1}} \) is used as the input number for \(\mathbf{\text{op2}} \) and gives an output number equal to the original input number for \(\mathbf{\text{op1}} \), then the procedures may be inverses of each other, as in \(\times 2 \) and \(\div 2 \).

- **Does the pattern work with special numbers like 1 and 0? With fractions and decimals? With positive and negative integers?**

- **What happens if you use \(\mathbf{\text{op2}} \) first, and then \(\mathbf{\text{op1}} \)?**

To recognize the equivalent procedures, students may need to use the \(\text{2nd} \) key to change outputs from decimal to fraction form or vice versa.
Continuing the Investigation

Older students can investigate equivalent procedures, such as dividing by a number and multiplying by its reciprocal. For example, if a student is exploring the relationship between $x \div 2$ and $\times \frac{1}{2}$, the tables might look something like this:

Table for $\div 2$

<table>
<thead>
<tr>
<th>Input</th>
<th>Procedure</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$x \div 2$</td>
<td>$0.5 = \frac{5}{10} = \frac{1}{2}$</td>
</tr>
<tr>
<td>2</td>
<td>$x \div 2$</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>$x \div 2$</td>
<td>$1.5 = \frac{15}{10} = 1\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Table for $\times \frac{1}{2}$

<table>
<thead>
<tr>
<th>Input</th>
<th>Procedure</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\times \frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>2</td>
<td>$\times \frac{1}{2}$</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>$\times \frac{1}{2}$</td>
<td>$1.5 = 1\frac{1}{2}$</td>
</tr>
</tbody>
</table>
Related Procedures

Name ___________________________ Date ___________________________

Collecting and Organizing Data

1. Choose a procedure for \(\text{Op1} \) (for example, \(x \frac{1}{2} \)).

2. Choose a procedure for \(\text{Op2} \) (for example, \(\div \ 2 \)).

3. Select an input number to apply the procedure to and record both the input and output numbers in the appropriate table.

4. Use the tables below to record and compare your results using \(\text{Op1} \) and \(\text{Op2} \).

<table>
<thead>
<tr>
<th>Input</th>
<th>Procedure</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Procedure</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyzing Data and Drawing Conclusions

5. How do the two procedures compare?

__

6. What patterns do you see?

__

7. Are the two procedures related? Explain.

__
In the Range

Overview
Students will interpret the rounding involved in measuring to identify the possible range of a given measurement.

Math Concepts
• rounding whole numbers
• rounding decimals
• measurement with metric units (length, mass, capacity)

Materials
• TI-15
• pencil
• meter sticks or metric measuring tapes
• student activity (p.27)

Introduction

1. Have students measure the length of a table or desk in the room and record the measurement to the nearest millimeter, for example, 1357 mm.

Discuss how measurements in millimeters can be recorded as 1357 mm or as thousandths of meters, 1.357 m. Note that the measurement was rounded to 1357 mm because it fell somewhere between $\frac{1}{2}$ of a millimeter less than 1357 mm (1356.5 mm) and $\frac{1}{2}$ of a millimeter more than 1357 mm (1357.5 mm).

| 1356.5 | 1357 | 1357.5 |

2. Have students then use rounding to record the same measurement to the nearest centimeter (136 cm or 1.36 m).

3. Enter the original measurement on the calculator as 1.357 and fix the display at two decimal places.

4. Have students fix the display at one decimal place. Ask:
What does this number represent? (The measurement rounded to the nearest tenth of a meter, or the measurement rounded to 14 decimeters.)

‡ To fix the display at 2 decimal places, press \(\text{Fix} \) [0.01 E[N].
‡ Have students discuss how the display of 1.36 matches their rounding of the measurement to 136 cm.
5. Have students fix the display to no decimal places, press \(\text{\textbeta} \) and then \(\text{1} \) to display 1. Ask: *What does this number represent?* (The measurement rounded to the nearest meter.)

6. Introduce the *In the Range* game by secretly entering a number on the calculator with three decimal places to represent a measurement in millimeters; for example, 2.531. Then display the number rounded to the nearest whole number (3). Show this display to students.

7. Tell students that this number represents the measurement of a length of board to the nearest meter. Ask students: *What could its measurement be if it had been measured to the nearest decimeter?* (2.5 m to 3.5 m)

8. Round the original number to the nearest tenth (2.5). Ask students: *Does this lie within the range we identified?*

9. Repeat for measuring to the nearest centimeter (hundredths) and millimeter (thousandths). (The range for centimeters would be 2.45 to 2.55, with 2.53 lying within that range; and the range for millimeters would be 2.525 to 2.535, with 2.531 lying within that range.)

10. Have students work in pairs to play the game and record their observations on their student activity pages.
Collecting and Organizing Data
As students are playing the game, focus their attention on the patterns that are developing by asking questions such as:

• When you record a measurement, why is rounding always involved?
• When you read a measurement, what interval should that measurement always indicate to you? (½ a unit less or ½ a unit more)
• How would this interval look on a number line (or meter stick)?
• How is ½ represented in the metric system?
• How are you deciding how to represent the range of possible measurements? What patterns are you using?

Analyzing Data and Drawing Conclusions
To guide students in the analysis of their data, ask questions such as:

• What range is indicated by every measurement?
• What patterns did you use in identifying the range of possible measurements?
• How would you use these patterns to round 256.0295 to the nearest tenth?

Continuing the Investigation
Have students replace the units of length with units of mass (grams, centigrams) or capacity (liters, milliliters) to notice the same patterns.

Have students discuss why this decimal place-value approach with the calculator does not work for measurements in yards, feet, and inches. Have them identify what range a measurement would lie in if it was measured to the nearest yard, nearest foot, and nearest inch. (For example, 2 yards would lie between 1 yard and 18 inches and 2 yards and 18 inches.)
Collecting and Organizing Data

Have your partner secretly enter a measurement with three decimals places into the calculator, and then fix the number to be rounded to the nearest whole number. Now look at the display and answer the following questions:

1. What is the measurement to the nearest meter? _________________
 a. What could be the range of the measurement if it had been measured to the nearest tenth of a meter (decimeters)?

 __

 b. Set \[\text{Fix} \] to the nearest tenth (\[0.1\]).

 What is the measurement to the nearest tenth? _______________

 Is that within the range you identified? ________________

2. What is the measurement to the nearest tenth of a meter? ______
 a. What could be the range of the measurement if it had been measured to the nearest hundredth of a meter (centimeters)?

 __

 b. Set \[\text{Fix} \] to the nearest hundredth (\[0.01\]).

 What is the measurement to the nearest hundredth? __________

 Is that within the range you identified? ________________

3. What is the measurement to the nearest hundredth of a meter? __
 a. What could be the range of the measurement if it had been measured to the nearest thousandth of a meter (millimeters)?

 __

 b. Set \[\text{Fix} \] to the nearest thousandth (\[0.001\]).

 What is the measurement to the nearest thousandth? _________

 Is that within the range you identified? ________________
Analyzing Data and Drawing Conclusions

Identify three measurements to the nearest millimeter that would be:

a. 10 m when rounded to the nearest meter.

b. 9.0 m when rounded to the nearest tenth of a meter (decimeter).

c. 9.05 m when rounded to the nearest hundredth of a meter (centimeter).
The Value of Place Value

Overview

Students will build their flexibility in using numbers by exploring the connections between the number symbols and their representations with base-ten materials.

Math Concepts

- **Grades 2 - 4**
 - whole number place value (through thousands)
 - money
- **Grades 4 - 6**
 - decimal place value (through thousandths)
 - metric units (meters, decimeters, centimeters)

Materials

- TI-15
- pencil
- *Counting on Frank* by Rod Clement
- base-ten materials
- student activity (pages 32 and 33)

Introduction

1. Read *Counting On Frank* by Rod Clement. Discuss some other kinds of questions that a person could ask about how many objects fit in or on other objects.

2. Give each group of students a large pile of units (over 300) from the base-ten materials, and tell them that this is how many jelly beans fit into a jar that you filled. Ask them to count the “jelly beans,” and observe the techniques they use (counting one at a time, making groups of 10, etc.).

3. Tell students you have run out of unit pieces and then ask:

 How many rods (groups of 10) would I need to use to make a pile of jelly beans the same size as yours?

4. Have students explore the answer to this problem with their units or apply their knowledge of place value. Then show them how to explore the answer using the calculator.

5. Have students compare their solutions with the base-ten materials to the calculator display. (They can make 31 tens rods from the 314 units, with 4 units left over.)

‡ To use the Place Value feature for this activity:

1. Press ‡.

3. Press $ to set the Place Value mode to 11–. This lets you find out how many ones, tens, hundreds, etc., are in a number. (The mode – is used to find what digit is in the ones, tens, hundreds, etc., place.)

‡ To explore answers to this problem on the calculator:

1. Press Š.

2. Enter the number of units (for example, 314).

3. Press Œ to see the display. (Using 314, the display is 31–, meaning there are 31 tens in 314.)
Collecting and Organizing Data

Have students use their base-ten materials and the calculator to continue the exploration with other numbers, identifying how many hundreds and thousands (and 0.1s and 0.01s for older students). Encourage exploration with questions such as:

- How many hundreds are in 120? 2478? 3056?
- How many tens are in 120? 2478? 3056?
- How many units (ones) are in 120? 2478? 3056?
- What numbers can you find that have 12 units? 12 tens? 12 hundreds?
- What numbers can you find that have 60 units? 60 tens? 60 hundreds?

Analyzing Data and Drawing Conclusions

Have students use the table on The Value of Place Value Student Activity page to record their findings and identify the patterns they see. To help them focus on the patterns, ask questions such as:

- How does the number of tens in 1314 compare to the number 1314? How about 567? 2457? 4089, etc.?

If you cover the digit in the units place, you see how many tens are in a number.

- How does the number of hundreds in 1314 compare to the number 1314? How about 567? in 2457? in 4089, etc.?

If you cover the digits to the right of the hundreds place, you see how many hundreds are in a number.

- How does the display on the calculator compare to what you can do with the base-ten materials?

If the calculator shows 31_, for 316, I should be able to make 31 tens rods out of the 316 units I have.

Students can use the 11 – . Place Value mode to test their conjectures. For example, if they think 1602 has 160 hundreds, they enter 1602, press _ 60, and see 16_. They can then use the base-ten materials to see why there are only 16 hundreds in 1602. (If students use the – 1 – . mode to find what digit is in the hundreds place, they will see _6_ displayed to show that 6 is the digit in the hundreds place.
Continuing the Investigation

Connect the place-value patterns to money. For example, ask students:

- **If each one of your “jelly beans” costs a penny, how many pennies would you spend for 1,314 jelly beans?**

 1,314 pennies.

- **How many dimes (tens) would you spend?**

 131 dimes and 4 more pennies.

- **How many dollars (hundreds)?**

 13 dollars, plus 14 more pennies, or 1 dime and 4 pennies.

Older students can record the money (and enter it into the calculator) in decimal form, 13.14. Then they can use the calculator to connect dimes to one tenth (0.1) of a dollar ($13.14 has 131 dimes or tenths) and pennies to one hundredth (0.01) of a dollar ($13.14 has 1314 pennies or hundredths).

For older students, connect the place-value patterns to conversions between metric units. For example, a measurement of 324 centimeters can also be recorded as 32.4 decimeters (or rounded to 32 dm) because 1 dm = 10 cm, or it can be recorded as 3.25 meters (or rounded to 3 m), because 1 m = 100 cm.
The Value of Place
Value, Part A

Collecting and Organizing Data

1. Use your base-ten materials and your calculator to explore how many tens, hundreds, and thousands are in a number. Record your observations in the table. What patterns do you see?

<table>
<thead>
<tr>
<th>Number</th>
<th>Number of Thousands</th>
<th>Number of Hundreds</th>
<th>Number of Tens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyzing Data and Drawing Conclusions: Patterns

2. Write 5 numbers that have 15 tens.

__

3. Write 5 numbers that have 32 hundreds.

__

4. Write 5 numbers that have 120 tens.

__
Collecting and Organizing Data

1. Use your base-ten materials and your calculator to explore how many tenths, hundredths, and thousandths are in a number. Record your observations in the table. What patterns do you see?

<table>
<thead>
<tr>
<th>Number</th>
<th>Number of Tenths</th>
<th>Number of Hundredths</th>
<th>Number of Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analyzing Data and Drawing Conclusions: Patterns

2. Write 5 numbers that have 15 tenths.

__

3. Write 5 numbers that have 32 hundredths.

__

4. Write 5 numbers that have 120 tenths.

__
What's the Problem? Grades 2 - 5

Overview

Students will connect number sentences to problem situations and use addition, subtraction, multiplication, and division to solve the problems.

Math Concepts

• addition, subtraction
• multiplication, division (Grades 3 - 5)
• number sentences (equations)
• inequalities (Grades 3 - 5)

Materials

• TI-15
• counters
• pencil
• student activity (page 37)

Introduction

1. On a sentence strip or on the overhead, display a number sentence such as “8 + 2 = ?” Have students brainstorm situations and related questions that this number sentence could be representing. For example, “If I bought eight postcards on my vacation and I had two postcards already at home, how many postcards do I have now?”

2. If necessary, have students act out the situation with counters and determine that the value of “?” is 10.

3. Demonstrate how to display this equation on the calculator, and how to tell the calculator what the value of “?” is.

4. Now display an equation such as ? - 10 = 5. Have students brainstorm situations and related questions that this number sentence could be representing. For example, “I had some money in my pocket, and I spent 10 cents of it. I only have 5 cents left. How much money did I have in my pocket to begin with?” Have students practice the keystrokes necessary to display this equation and test the value they determine for “?”. If an incorrect value is tested for “?”, the calculator will display NO and provide a hint. For example, if a student tests 5 for the equation ? - 10 = 5, the calculator displays NO, then shows 5 - 10 < 5, and then returns to the original equation.

5. Over a period of time, continue to introduce students to different types of number sentences to explore. For example, ? - 8 < 5 (which has 13 whole number solutions) and ? x ? = 24 (which has 8 solutions of whole number factor pairs) and ? x 4 = 2 (which has no whole number solution).
What’s the Problem? (Continued)

Collecting and Organizing Data

As an ongoing activity, have students work in pairs and use the What’s The Problem? Student Activity sheet to create problem-solving cards. Have one partner create an addition, subtraction, multiplication, or division number sentence, using the “?” and record it in the top box and on the calculator. If possible, the other partner creates a situation and question to go with the number sentence and records it in the bottom box. The two boxes can be glued or taped to opposite sides of an index card.

Have students work together with the calculator to explore how many whole number solutions the equation has and test what the solutions are. Provide ideas for exploration by asking questions such as:

- What actions could be happening in your story to go with addition (subtraction, multiplication, or division)?
- How could you use these counters to act out this number sentence?
- What could this number in the number sentence represent in your story?
- What could the question mark in the number sentence represent in your story?
- Can you make a story for a number sentence that begins with a question mark?

Analyzing Data and Drawing Conclusions

To focus students’ thinking on the relationships between their stories and the numbers and operations in their number sentences, ask questions such as:

- How would using a different number here change your story?
- How would using a greater than or less than symbol instead of an equal sign in the number sentence change your story?
- How would using a different operation in your number sentence change your story?
What’s the Problem? (Continued)

Continuing the Investigation

- Have partners create stories and trade them. Each partner can then write a number sentence to go with the other partner’s story.

- Have students sort the number sentences they have made into categories: e.g., those with 0 whole number solutions, those with one whole number solution, those with two whole number solutions, those with infinite whole number solutions.

- Have students try to find an equation or inequality with exactly 0 whole number solutions, exactly 1 whole number solution, exactly 2 whole number solutions, more than 5 whole number solutions, etc.
Write a number sentence using an operation and the “?”

Write a story that describes a situation and asks a question that can be represented by the number sentence.
How to Use the TI-15

Display, Scrolling, Order of Operations, Parentheses 39
Clearing and Correcting 42
Mode Menus 45
Basic Operations 48
Constant Operations 55
Whole Numbers and Decimals 63
Memory 68
Fractions 71
Percent 80
Pi 84
Powers and Square Roots 88
Problem Solving: Auto Mode 94
Problem Solving: Manual Mode 100
Place Value 106
Display, Scrolling, Order of Operations, and Parentheses

Keys

1. [X] opens a parenthetical expression. You can have as many as 8 parentheses at one time.

2. [Y] closes a parenthetical expression.

3. ← and → move the cursor left and right. ↑ and ↓ move the cursor up and down through previous entries and results.

Notes

- The examples on the transparency masters assume all default settings.
- The EOS™ transparency master demonstrates the order in which the TI-15 completes calculations.
- When using parentheses, if you press [Enter] before pressing [Y], **Syn Error** is displayed.
- Operations inside parentheses are performed first. Use [X] or [Y] to change the order of operations and, therefore, change the result.

Example:

1 + 2 × 3 = 7
(1 + 2) × 3 = 9

- The first and second lines display entries up to 11 characters plus a decimal point, a negative sign, and a 2-digit positive or negative exponent. Entries begin on the left and scroll to the right. An entry will always wrap at the operator.
- Results are displayed right-justified. If a whole problem will not fit on the first line, the result will display on the second line.
Equation Operating System

<table>
<thead>
<tr>
<th>Priority</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (first)</td>
<td>()</td>
</tr>
<tr>
<td>2</td>
<td>Frac</td>
</tr>
<tr>
<td>3</td>
<td>^, √</td>
</tr>
<tr>
<td>4</td>
<td>(−)</td>
</tr>
<tr>
<td>5</td>
<td>×, ÷</td>
</tr>
<tr>
<td>6</td>
<td>+, −</td>
</tr>
<tr>
<td>7</td>
<td>Ua ↔ da, F↔D</td>
</tr>
<tr>
<td>8 (last)</td>
<td>Enter</td>
</tr>
</tbody>
</table>

Because operations inside parentheses are performed first, you can use () to change the order of operations and, therefore, change the result.
Order of Operations

1 + 2 × 3 =

### Press	Display
1 + 2 × 3 | \(1 + 2 \times 3 = 1\)

Add

Multiply

Parentheses

(1 + 2) × 3 =

### Press	Display
(1 + 2) | \(1 + 2 = 1\)
× 3 | \((1 + 2) \times 3 = 9\)

© 2000 TEXAS INSTRUMENTS INCORPORATED

TI-15: A Guide for Teachers

41
Clearing and Correcting

Keys
1. © turns the calculator on and off.
2. ← clears the last digit you entered, allowing you to correct an entry without re-entering the entire number.
3. ☐ clears the last entry, all pending operations, and any error conditions. You can then enter a new number and continue your calculation.

Notes
- The examples on the transparency masters assume all default settings.
- Pressing © and ☐ simultaneously resets the calculator. Resetting the calculator:
 - Returns settings to their defaults.
 - Clears memory and constants.
- Pressing ☐ does not affect the mode settings, memory, or constants.
Clearing entries

1. Enter $335 + 10$.
2. Clear the entry and pending operation.
3. Enter $335 - 9$.
4. Complete the calculation.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>$335 \ + \ 10$</td>
<td>$335 + 10$</td>
</tr>
<tr>
<td>Clear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>$335 \ - \ 9$</td>
<td>$335 - 9$</td>
</tr>
<tr>
<td>Enter</td>
<td>$335 - 9 = 326$</td>
</tr>
</tbody>
</table>

Note: Clear clears the screen, but not the history.
Correcting entry errors using backspace

1. Enter 1569 + 3.
2. Change the 9 to an 8.
3. Add 3.
4. Complete the calculation.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1569 + 3</td>
<td>1569 + 3</td>
</tr>
<tr>
<td>← ← ← 8</td>
<td>1568</td>
</tr>
<tr>
<td>+ 3</td>
<td>1568 + 3</td>
</tr>
<tr>
<td>Enter</td>
<td>1568 + 3 = 1571</td>
</tr>
</tbody>
</table>
Mode Menus

Keys
See the tables on the next two pages for details about each mode setting option.

1. \text{Mode} displays the Calculator Mode menu, from which you can select the following options:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division (÷)</td>
<td>. n/d</td>
</tr>
<tr>
<td>Constants (Op)</td>
<td>+1 ?</td>
</tr>
<tr>
<td>Clear</td>
<td>Op 1 Op 2</td>
</tr>
<tr>
<td>RESET</td>
<td>N Y</td>
</tr>
</tbody>
</table>

2. \text{Mode} displays the Problem Solving Mode menu, from which you can select the following options:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Auto Man</td>
</tr>
<tr>
<td>Level of difficulty</td>
<td>1 2 3</td>
</tr>
<tr>
<td>Operation</td>
<td>+ - x ÷ ?</td>
</tr>
<tr>
<td>Display option</td>
<td>11- 1-</td>
</tr>
</tbody>
</table>

3. \text{Frac} displays the Fractions menu, from which you can select the following options:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>U n/d n/d</td>
</tr>
<tr>
<td>Simplify</td>
<td>Man Auto</td>
</tr>
</tbody>
</table>

Notes
- The examples on the transparency masters assume all default settings.
- You must be in Problem Solving (\text{Mode}) to see its menu when you press \text{Mode}. Otherwise, you will see the Calculator Mode menu.
- Press \text{Mode} to display the Calculator Mode menu, \text{Mode} to display the Problem Solving Mode menu, or \text{Frac} to display the Fractions Mode menu. Press Enter after you make your selection, then press \text{Mode} or \text{Frac} again to exit the menu.
Calculator Mode Menu

<table>
<thead>
<tr>
<th>Setting</th>
<th>Option</th>
<th>Explanation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division (÷)</td>
<td>•</td>
<td>Displays division results as a decimal</td>
<td>.75</td>
</tr>
<tr>
<td></td>
<td>n/d</td>
<td>Displays division results as a fraction</td>
<td>3/4</td>
</tr>
<tr>
<td>Constant Operations (OP)</td>
<td>+1</td>
<td>Shows the constant operation on the display</td>
<td>1x5 1/5</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>Hides the constant operation</td>
<td>1 5</td>
</tr>
<tr>
<td>Clear</td>
<td>OP1</td>
<td>When selected, clears Op1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP2</td>
<td>When selected, clears Op2</td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td>N</td>
<td>No; does not reset the calculator.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Yes; resets the calculator.</td>
<td></td>
</tr>
</tbody>
</table>

Problem Solving Mode Menu

<table>
<thead>
<tr>
<th>Setting</th>
<th>SubMenu</th>
<th>Option</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Level of difficulty</td>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operation</td>
<td>+ − x ÷ ? (add, subtract, multiply, divide, find the operation)</td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>Display option (for Problem Solving Place Value only)</td>
<td>11- (Displays the number of ones, tens, hundreds, or thousands)</td>
<td>1234 For [100]; 12_ _</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1- (Displays the digit that is in the ones, tens, hundreds, or thousands place)</td>
<td>1234 For [100]; _ 2 _ _</td>
</tr>
</tbody>
</table>
Fractions Menu

<table>
<thead>
<tr>
<th>Setting</th>
<th>Option</th>
<th>Explanation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>U n/d</td>
<td>Displays results as mixed numbers</td>
<td>$1 \frac{3}{4}$</td>
</tr>
<tr>
<td></td>
<td>n/d</td>
<td>Displays results as improper fractions</td>
<td>$\frac{7}{4}$</td>
</tr>
<tr>
<td>Simplify</td>
<td>Man</td>
<td>Allows manual simplification</td>
<td>$\frac{6}{8} = \frac{3}{4}$</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>Automatically simplifies to most reduced form of fraction</td>
<td>$\frac{3}{4}$</td>
</tr>
</tbody>
</table>
Basic Operations

Keys
1. **+** adds.
2. **-** subtracts.
3. **×** multiplies.
4. **÷** divides. The result may be displayed as a decimal or fraction depending on the mode setting you have selected.
5. **Int ÷** divides a whole number by a whole number and displays the result as a quotient and remainder.
6. **Enter** completes the operation.
7. **(** lets you enter a negative number.

Notes
- The examples on the transparency masters assume all default settings.
- The result of Integer Divide **Int ÷** always appears as quotient and remainder (**_ _r _ _**).
- The maximum number of digits for quotient or remainder (**r**) is 5. Quotient, remainder, and the **r** character cannot total more than 10 characters.
- If you use the result of integer division in another calculation, only the quotient is used. The remainder is dropped.
- All numbers used with **Int ÷** must be positive whole numbers.
- If you attempt to divide by 0, an error message is displayed.
- **+**, **-**, **×**, **÷**, **Enter**, and **Int ÷** work with the built-in constants.
Basic Operations

2 + 54 - 6 =

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 54 -</td>
<td>2 + 54 - 6 = 50</td>
</tr>
<tr>
<td>6 Enter</td>
<td></td>
</tr>
</tbody>
</table>

3 × 4 ÷ 2 =

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 × 4 ÷ 2</td>
<td>3 × 4 ÷ 2 = 6</td>
</tr>
<tr>
<td>Enter</td>
<td></td>
</tr>
</tbody>
</table>

Add, Subtract

| + | - |

Multiply, Divide

| × | ÷ |

Equals

Enter
Entering negative numbers

The temperature in Utah was $-3^\circ C$ at 6:00 a.m. By 10:00 a.m., the temperature had risen 12° C. What was the temperature at 10:00 a.m.?

Press	Display
$(-)\ 3\ +\ 12$ | $-3 + 12 = \boxed{9}$

Negative

$(-)$
Division with remainders

Chris has 27 pieces of gum. He wants to share the pieces evenly among himself and 5 friends. How many pieces will each person get? How many pieces will be left over?

Press	Display
27 \(\text{Int} \div 6 \) | \(27 \div 6 = 4 \text{ r } 3 \)
Division with decimal result

Set the division display option to decimal and divide 27 by 6.

Press	Display
Mode Enter |
Mode | 4
27 ÷ 6 Enter | 27 ÷ 6 = 4.5

Divide

© 2000 Texas Instruments Incorporated

TI-15: A Guide for Teachers

52
Division with fractional result

Set the division display option to fraction and divide 27 by 6.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode → Enter</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>27 ÷ 6 Enter</td>
<td></td>
</tr>
<tr>
<td>Simp Enter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Calculating equivalent units of time

Sara ran 2 kilometers in 450 seconds. Convert her time to minutes and seconds.

450 seconds = ? minutes

? seconds

Press Display

450 \(\text{Int} \div\) 60 \(\frac{450}{60} = 7 \text{ r } 30\)
Constant Operations

Keys
1. \[\text{Op1}\] lets you define or execute operation 1.
2. \[\text{Op2}\] lets you define or execute constant operation 2.

Notes
• The examples on the transparency masters assume all default settings.
• The constant memory is set in conjunction with \[\text{Op1}\] and \[\text{Op2}\] when you perform a calculation that uses \(+\), \(-\), \(*\), \(/\), \(\text{int}\), and \(\sqrt{\).
• The constant function works with whole numbers, decimals, and fractions.
• When you use \[\text{Op1}\] or \[\text{Op2}\], a counter appears at the left and the total appears on the second line at the right of the display. The counter shows how many times the constant has been repeated. If the number at the right exceeds 6 digits, the counter will not be shown. The counter returns to 0 after it reaches 99.
• When you use \[\text{int}\] with the constant function, subsequent calculations are performed with the quotient portion of the result. The remainder is dropped.
• You can clear a stored constant by resetting the calculator (pressing \(<\) and \(\text{opp}\) simultaneously) or by pressing \(\text{Mode}\), pressing \(\downarrow\) to scroll to the CLEAR menu, selecting OP1 (or OP2) and pressing \(\text{Enter}\). Pressing \(<\) by itself does not clear the constant function.
Addition as “counting on”

There are 4 frogs in a pond. If 3 more frogs jump into the pond 1 at a time, how many frogs will be in the pond?

Press Display

\[
\begin{align*}
\text{Op1} + 1 \text{ Op1} & \quad \text{Op1} + 1 \\
(\text{stores operation}) & \quad 4 \\
\text{initialize using 4} & \\
\text{Op1} + 1 & \quad 5 \\
(\text{add 1 one at a time}) & \\
\text{Op1} + 1 & \quad 6 \\
\text{Op1} + 1 & \quad 7
\end{align*}
\]
Multiplication as “repeated addition”

Maria put new tile in her kitchen. She made 4 rows with 5 tiles in each row. Use repeated addition to find how many tiles she used. Before you begin, set the calculator to hide the constant operation.

Press

Display

Constant Operations

© 2000 TEXAS INSTRUMENTS INCORPORATED

TH-15: A Guide for Teachers

57
Multiplication as “repeated addition”

Continued

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op1</td>
<td>Op1</td>
</tr>
<tr>
<td>1</td>
<td>1 5</td>
</tr>
<tr>
<td>Op1</td>
<td>Op1</td>
</tr>
<tr>
<td>2</td>
<td>2 10</td>
</tr>
<tr>
<td>Op1</td>
<td>Op1</td>
</tr>
<tr>
<td>3</td>
<td>3 15</td>
</tr>
<tr>
<td>Op1</td>
<td>Op1</td>
</tr>
<tr>
<td>4</td>
<td>4 20</td>
</tr>
</tbody>
</table>
Powers as “repeated multiplication”

Use this formula and repeated multiplication to find the volume of a cube with a base of 5 meters.

\[V = l \times w \times h = 5 \times 5 \times 5 = 5^3 \]

![Cube diagram]

### Press	Display
\[\text{Op1} \times 5 \text{ Op1} \] (store the operation) | \[\times 5 \]
\[1 \] (initialize using 1) | \[4 \]
\[\text{Op1} \] | \[1 \times 5 \]
\[\text{Op1} \] | \[5 \times 5 \]
\[\text{Op1} \] | \[25 \times 5 \]
\[\text{Op1} \] | \[125 \]
Using \(^\wedge\) as a constant

Use this formula to find the volume of each cube.

\[V = \text{base}^3 \]

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Op} \ 3 \ 3 \ \text{Op}</td>
<td>Op1 \ 3</td>
</tr>
<tr>
<td>2 \ \text{Op}</td>
<td>Op1 \ 2 \ 3</td>
</tr>
<tr>
<td>3 \ \text{Op}</td>
<td>Op1 \ 3 \ 3</td>
</tr>
<tr>
<td>4 \ \text{Op}</td>
<td>Op1 \ 4 \ 3</td>
</tr>
</tbody>
</table>

\text{Constant Operations}

Powers

\(^\wedge\)

\text{Clear}

\text{Enter}

\(\text{Op}1\)

\(\text{Op}2\)
Using OP 1 and OP 2 together

Ming received 5 stickers for each household job she completed. She gave her brother 2 stickers for helping with each job. If they completed 3 jobs, how many stickers does she have?

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op1 + 5 Op1</td>
<td>Op1 + 5</td>
</tr>
<tr>
<td>Op2 − 2 Op2</td>
<td>Op1 Op2 − 2</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Op1</td>
<td>Op1 Op2 0 ÷ 5</td>
</tr>
<tr>
<td>Op2</td>
<td>Op1 Op2 5 − 2</td>
</tr>
<tr>
<td>Op1 Op2</td>
<td>Op1 Op2 3 − 2</td>
</tr>
<tr>
<td>Op1 Op2</td>
<td></td>
</tr>
</tbody>
</table>

Constant Operations

- Op1
- Op2

© 2000 Texas Instruments Incorporated
Clearing constant operations

Before entering a new operation in OP1 or OP2, you must clear the current values.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>. N/d</td>
</tr>
<tr>
<td></td>
<td>÷</td>
</tr>
<tr>
<td></td>
<td>OP1</td>
</tr>
<tr>
<td></td>
<td>OP2</td>
</tr>
<tr>
<td></td>
<td>———</td>
</tr>
<tr>
<td></td>
<td>CLEAR</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td>OP1</td>
</tr>
<tr>
<td>(clears OP1)</td>
<td>OP2</td>
</tr>
<tr>
<td></td>
<td>———</td>
</tr>
<tr>
<td></td>
<td>CLEAR</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td>OP1</td>
</tr>
<tr>
<td>(clears OP2)</td>
<td>OP2</td>
</tr>
<tr>
<td></td>
<td>———</td>
</tr>
<tr>
<td></td>
<td>CLEAR</td>
</tr>
<tr>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>(exits Mode menu)</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: Pressing \(\text{Clear} \) does not clear constant operations.
Whole Numbers and Decimals

Keys
1. \(\text{T} \) enters a decimal point.
2. \(\text{Fix} \) sets the number of decimal places in conjunction with the Place Value keys (3 through 9 on the illustration below). Only the displayed result is rounded; the internally stored value is not rounded. The calculated value is padded with trailing zeros if needed.
3. \(\text{Fix} \ 1000 \) rounds results to the nearest thousand.
4. \(\text{Fix} \ 100 \) rounds results to the nearest hundred.
5. \(\text{Fix} \ 10 \) rounds results to the nearest ten.
6. \(\text{Fix} \ 1 \) rounds results to the nearest one.
7. \(\text{Fix} \ 0,1 \) rounds results to the nearest tenth.
8. \(\text{Fix} \ 0,01 \) rounds results to the nearest hundredth.
9. \(\text{Fix} \ 0,001 \) rounds results to the nearest thousandth.

\(\text{Fix} \) removes the fixed-decimal setting.

You must press \(\text{Fix} \) before a Place Value key each time you want to change the number of places for rounding.

Notes
- The examples on the transparency masters assume all default settings.
- The calculator automatically rounds the result to the number of decimal places selected. (Only the displayed value is rounded. The internally stored value is not rounded.)
Notes (Continued)

- All results are displayed to the fixed setting until you either clear the setting by pressing Fix or reset the calculator.

- You can set 0 through 3 decimal places.

- If students are puzzled when they round .555 to the nearest whole number, for example, and the result is 1, you may need to remind them of the rules of rounding.

- You can use r to enter decimal numbers regardless of the fixed decimal setting.

- You must press Enter before FIX takes effect.

- You can apply the FIX setting to an individual value or to the result of an operation.
Setting the number of decimal places

Round 12.345 to the hundredth’s place, the tenth’s place, the thousandth’s place, and then cancel the Fix setting.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 □ 345 Enter</td>
<td>12.345= 12.345</td>
</tr>
<tr>
<td>Fix 0.01</td>
<td>Fix 12.345= 12.35</td>
</tr>
<tr>
<td>Fix 0.1</td>
<td>Fix 12.345= 12.3</td>
</tr>
<tr>
<td>Fix 0.001</td>
<td>Fix 12.345= 12.345</td>
</tr>
</tbody>
</table>

To cancel Fix:

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix 0</td>
<td>12.345= 12.345</td>
</tr>
</tbody>
</table>
Addition with money

José bought ice cream for $3.50, cookies for $2.75, and a large soda for $.99. How much did he spend?

Press	Display
Fix 0.01 Enter | Fix 3.50 2.75 + .99 = 7.24
Converting decimals to fractions

Convert the decimal .5 to a fraction, and then view the decimal again after the conversion.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5 Enter</td>
<td>.5 = 0.5</td>
</tr>
<tr>
<td>F↔D</td>
<td>.5 = (\frac{5}{10})</td>
</tr>
<tr>
<td>F↔D</td>
<td>(Return to decimal)</td>
</tr>
</tbody>
</table>
Memory

Keys

1. ▶M functions as shown below:
 - ▶M Enter Stores displayed value over value in memory.
 - ▶M + Adds displayed value to memory.
 - ▶M − Subtracts displayed value from value in memory.
 - ▶M × Multiplies displayed value by value in memory.
 - ▶M ÷ Divides value in memory by the displayed value.

 ▶M int ÷ Performs integer division on value in memory using the displayed value. Only the quotient is stored and displayed.

2. MR/MC recalls the contents of memory to the display. When pressed twice, it clears the memory.

Notes

- The examples on the transparency masters assume all default settings.
- Results are stored to memory and not displayed. The display remains the same.
- You can store integers, fractions, and decimals in memory.
- M is displayed anytime a value other than 0 is in memory.
- To clear the memory, press MR/MC twice.
Using memory to add products

Hamburgers 2 $1.19 =
Milk shakes 3 $1.25 =
Coupon for each milk shake 3 $.20 =
Total cost =

Store to Memory

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (\times) 1 (\bullet) 19 (\text{Enter})</td>
<td>(2 \times 1.19 = 2.38)</td>
</tr>
<tr>
<td>(\text{M}) (\text{Enter})</td>
<td>(2 \times 1.19 = 2.38)</td>
</tr>
<tr>
<td>3 (\times) 1 (\bullet) 25 (\text{Enter})</td>
<td>(3 \times 1.25 = 3.75)</td>
</tr>
<tr>
<td>(\text{M}) + (\text{Add milk shakes to memory.})</td>
<td>(3 \times 1.25 = 3.75)</td>
</tr>
<tr>
<td>3 (\times) 0 (\bullet) 20 (\text{Enter})</td>
<td>(3 \times .20 = 0.6)</td>
</tr>
<tr>
<td>(\text{M}) (\text{Deduct coupon from memory.})</td>
<td>(3 \times .20 = 0.6)</td>
</tr>
<tr>
<td>(\text{MR/MC}) (\text{Recall the total cost.})</td>
<td>(5.53)</td>
</tr>
</tbody>
</table>

© 2000 TEXAS INSTRUMENTS INCORPORATED

TI-15: A Guide for Teachers
Using memory to find averages

Dai has test scores of 96 and 85. He has weekly scores of 87 and 98. Find the average for each group of scores and the average of his averages together.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 + 85</td>
<td>96 + 85 = 181</td>
</tr>
<tr>
<td>÷ 2 Enter</td>
<td>181 ÷ 2 = 90.5</td>
</tr>
<tr>
<td>►M Enter</td>
<td>M 181 ÷ 2 = 90.5</td>
</tr>
<tr>
<td>87 + 98</td>
<td>87 + 98 = 185</td>
</tr>
<tr>
<td>÷ 2 Enter</td>
<td>185 ÷ 2 = 92.5</td>
</tr>
<tr>
<td>+ MR/MC</td>
<td>M 92.5 + 90.5 = 183</td>
</tr>
<tr>
<td>÷ 2 Enter</td>
<td>M 183 ÷ 2 = 91.5</td>
</tr>
</tbody>
</table>
Fractions

Keys

1. **Frac** displays a menu of mode settings from which you can select how the fraction results will be displayed. You select 2 items.

 - **U n/d** (default) displays mixed number results.
 - **n/d** displays fraction results.

2. **Unit** lets you enter the whole-number part of a mixed number.

3. **n** lets you enter the numerator of a fraction.

4. **d** lets you enter the denominator of a fraction.

5. **M** (default) displays unsimplified fraction results so you can simplify them manually (step-by-step).

6. **Auto** displays fraction results simplified to lowest terms.

7. **F to D** changes a mixed number to a fraction and vice versa.

8. **D to F** displays the factor (divisor) used to simplify the last fraction result. You must be in Manual mode to use this function.

Notes

- The examples on the transparency masters assume all default settings.
Notes (continued)

• Dividing a fraction by a fraction gives fractional results regardless of the division setting (decimal or fraction).

• The Fractions mode settings provide 4 possible display options for computational results displayed in fraction form. For example, for \(\frac{6}{4} \), the displays would look like this:

 \[
 \begin{align*}
 \text{manual simp/improper (n/d)} & : \quad \frac{6}{4} \\
 \text{auto simp/improper (n/d)} & : \quad \frac{3}{2} \\
 \text{manual simp/mixed number:} & \quad \text{(U n/d)} + \frac{1}{4} \\
 \text{auto simp/mixed number:} & \quad \text{(U n/d)} + \frac{1}{2}
 \end{align*}
 \]

• You can enter the denominator or numerator first.

• For operations, you can enter 1 to 1000 for the denominator. For conversions to decimal, you can enter 1 to 100,000,000 for the denominator.

• When you multiply or divide fractions and decimals, the result is displayed as a decimal. A decimal cannot be converted to a fraction if the result would overflow the display.

• Clearing with \(\text{C} \) in fractions occurs from right bottom to left top. If you accidentally press \(\text{D} \) (the denominator key) after entering the numerator, without entering a numeral for the denominator first, using \(\text{C} \) will not correct that error. You will need to clear and begin the entry again.

• If the decimal place is set to 0, the decimal equivalent for a fraction will not be displayed.
Adding mixed numbers

A baby girl weighed 4 \(\frac{3}{8}\) pounds at birth. In the next 6 months, she gains 2 \(\frac{3}{4}\) pounds. How much does she weigh?

Press

<table>
<thead>
<tr>
<th>4</th>
<th>Unit</th>
<th>8</th>
<th>(\bar{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(n)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Unit</td>
<td>3</td>
<td>(n)</td>
</tr>
<tr>
<td>4</td>
<td>(\bar{d})</td>
<td>Enter</td>
<td></td>
</tr>
</tbody>
</table>

Display

\[
4 \frac{3}{8} + 2 \frac{3}{4} = 7 \frac{1}{8}
\]

Unit Key

Mixed to Improper Conversion

\(Un \leftrightarrow \bar{n}\)
Simplifying fractions

Method 1: The calculator chooses a common factor

Simplify \(\frac{18}{24} \).

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 (\boxed{n}) 24</td>
<td>(\frac{18}{24})</td>
</tr>
<tr>
<td>Simpl</td>
<td>(\frac{18}{24}) (\boxed{\text{Simp}})</td>
</tr>
<tr>
<td>Enter</td>
<td>(\frac{18}{24}) (\boxed{\text{Simp}}) (\boxed{\text{Enter}})</td>
</tr>
<tr>
<td>Fac</td>
<td>(\frac{3}{4})</td>
</tr>
</tbody>
</table>

(Optional: Check factor. You must be in Manual mode.)

Fac

(Return to the fraction.)

Simp Enter

(Continue simplifying.)
Simplifying fractions

Method 2: You choose a common factor

Simplify \(\frac{18}{24} \).

Press Display

18 \(\boxed{\text{n}} \) 24
(Enter the fraction.)

\(\boxed{\text{Simp}} \)
(Prepare to simplify.)

6
(Enter a common factor.)

\(\boxed{\text{Enter}} \)
(Simplify the fraction.)
Converting fractions to decimals

Convert the fraction \(\frac{5}{10} \) to a decimal, and then view the original fraction after the conversion.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (\text{n}) 10 Enter</td>
<td>(\frac{N}{n}) (\frac{d}{D}) 5 (\frac{10}{10})</td>
</tr>
<tr>
<td>F(\leftrightarrow D)</td>
<td>0.5</td>
</tr>
<tr>
<td>F(\leftrightarrow D) (Return to fraction.)</td>
<td>5 (\frac{10}{10})</td>
</tr>
<tr>
<td>F(\leftrightarrow D) (Return to decimal.)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Numerator Key \(\text{n} \)
Denominator Key \(\text{d} \)
Fraction to Decimal \(\text{F} \(\leftrightarrow \text{D} \) \)
Converting decimals to fractions

Convert the decimal .5 to a fraction, and then view the decimal again after the conversion.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Enter</td>
<td>.5 = 0.5</td>
</tr>
<tr>
<td>F D</td>
<td>.5 = (\frac{5}{10})</td>
</tr>
<tr>
<td>F D (Return to decimal.)</td>
<td>.5</td>
</tr>
</tbody>
</table>

Numerator Key: \(\text{Shift n}\)

Denominator Key: \(\text{Shift d}\)

Fraction to Decimal: \(\text{Shift F D}\)
Converting between fractions and mixed numbers

Convert the improper fraction $\frac{6}{4}$ to a mixed number.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac</td>
<td></td>
</tr>
<tr>
<td>⌂</td>
<td></td>
</tr>
<tr>
<td>Frac 6 ⌂ 4</td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td></td>
</tr>
<tr>
<td>Simp</td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td></td>
</tr>
<tr>
<td>Un ⌂ d</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

Numerator Key

n

Denominator Key

d

Fraction Modes

Frac
Comparing fractions and decimals

Linda swims 20 laps in 5.72 minutes. Juan swims 20 laps in 5¾ minutes. Who swims faster? Compare the time as decimals and fractions.

To compare the times as decimals:

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 [Unit] 3 (\overline{\mathcal{N}})</td>
<td>(\frac{3}{4}) = (\frac{3}{4})</td>
</tr>
<tr>
<td>4 [Enter]</td>
<td>(5.75)</td>
</tr>
<tr>
<td>(\overline{\mathcal{F}} \leftrightarrow \overline{\mathcal{D}})</td>
<td></td>
</tr>
<tr>
<td>(\overline{\mathcal{F}} \leftrightarrow \overline{\mathcal{D}})</td>
<td>(\frac{75}{100})</td>
</tr>
</tbody>
</table>

Continue to compare as fractions:

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (\Box) 72 [Enter]</td>
<td>(5.72 = 5.72)</td>
</tr>
<tr>
<td>(\overline{\mathcal{F}} \leftrightarrow \overline{\mathcal{D}})</td>
<td>(\frac{72}{100})</td>
</tr>
</tbody>
</table>
Percent

Keys
1. \(\text{\%} \) converts to a percent.
2. \(\% \) enters a percent.

Notes
- The examples on the transparency masters assume all default settings.
Converting with percent

Convert 25% to a decimal.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 % Enter</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Convert $\frac{25}{100}$ to a percent.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 [100 d ▶% Enter</td>
<td>$\frac{25}{100}$</td>
</tr>
</tbody>
</table>

Convert 3 to a percent.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ▶% Enter</td>
<td>300%</td>
</tr>
</tbody>
</table>
Converting with fractions, decimals, and percent

Convert 25% to a fraction, simplify to lowest terms, and then convert the fraction to a decimal.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 % Enter</td>
<td>![Image of calculator display showing 25% as 0.25]</td>
</tr>
<tr>
<td>F<->D</td>
<td>![Image of calculator display showing N/D as n/d]</td>
</tr>
<tr>
<td>Simp Enter</td>
<td>![Image of calculator display showing simplified fraction as 5/20]</td>
</tr>
<tr>
<td>Simp Enter</td>
<td>![Image of calculator display showing simplified fraction as 1/4]</td>
</tr>
<tr>
<td>F<->D</td>
<td>![Image of calculator display showing 0.25]</td>
</tr>
<tr>
<td>►%</td>
<td>![Image of calculator display showing 0.25 as 25%]</td>
</tr>
</tbody>
</table>
Calculating tips

The Chen family went to a restaurant for dinner. Their bill was $31.67. How much was the tip if they left 15% of their bill? How much was the total including the tip?

Press	Display
31.67 Enter | 31.67 = 31.67
Fix 0.01 | Fix 31.67 = 31.67
× 15 % Enter | Fix 31.67 × 15 % = 4.75
31.67 + 4.75 Enter | 31.67 + 4.75 = 36.42
Pi

Keys
1. \(\pi \) enters \(\pi \).

Notes
- The examples on the transparency masters assume all default settings.
- Internally, \(\pi \) is stored to 13 digits (3.141592653590). Only 9 decimal places are displayed.
- To convert from \(\pi \) to a decimal value, press \([\leftarrow \rightarrow D]\). Nine decimal places are displayed.
Using pi to find circumference

Use this formula to find the amount of border you need to buy if you want to put a circular border around a tree at a distance of 3 meters from the tree.

\[C = 2\pi r = 2 \times \pi \times 3 \]

Press Display

2 \(\times \) \(\pi \)

\(2 \times \pi \)

\(\times \) 3 Enter

\(2\times\pi \times 3 = \ln \)

18.84955592
Using pi to find area

Use this formula to find how much of the lawn would be covered by a sprinkler with a radius of 12 meters.

\[A = \pi r^2 = \pi \times 12^2 \]

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>π ×</td>
<td>(\pi \times)</td>
</tr>
<tr>
<td>12 (^2)</td>
<td>(\pi \times 12^2)</td>
</tr>
<tr>
<td>Enter</td>
<td>(\pi \times 12^2 = 144\pi)</td>
</tr>
<tr>
<td>F→D</td>
<td>452.3893421</td>
</tr>
</tbody>
</table>
Using pi to find volume

Use this formula to find how much space a ball occupies.

\[V = \frac{4\pi r^3}{3} \]

Press Display

\[
\begin{align*}
4 \times \pi \times & \quad 4 \times \pi \times \\
5 \wedge 3 & \quad 4 \times \pi \times 5^3 \\
\div 3 & \quad 4 \times \pi \times 5^3 \div 3 \\
\text{Enter} & \quad 4 \times \pi \times 5^3 \div 3 =
\end{align*}
\]

\[523.5987756 \]
Powers and Square Roots

Keys
1. \(\text{\textcircled{2}} \) lets you specify a power for the value entered. When you press \(\text{Enter} \), the value is displayed if it is within the range of the calculator.

2. \(\sqrt{\text{\textcircled{2}}} \) calculates the square root of positive values, including fractions.

Notes
• The examples on the transparency masters assume all default settings.
Finding the area of a square

Use this formula to find the size of the tarpaulin needed to cover the entire baseball infield.

\[A = x^2 = 90^2 \]

Press Display

\[
\begin{array}{c}
90 \hspace{1em} 2 \\
\end{array}
\]

\[
\begin{array}{c}
90^2 = 8100 \\
\end{array}
\]
Finding the square root

Use this formula to find the length of the side of a square clubhouse if 36 square meters of carpet would cover the floor.

\[L = \sqrt{x} = \sqrt{36} \]

36 m² of carpet

Press	Display
\(\sqrt{} \) 36 \(\sqrt{} \) | \(\sqrt{36} \) = 6
Calculating powers

Fold a piece of paper in half, in half again, and so on until it is not possible to physically fold it in half again. How many sections are there after ten folds?

Press Display

2 \[\wedge \] 10 \[\text{Enter} \] \(2^{10} = 1024 \)
Calculating negative powers

Find the standard numerals for the following powers:

\[
\begin{align*}
2^{-3} &= \\
-2^{-3} &= \\
.2^{-3} &= \\
(1/2)^{-3} &=
\end{align*}
\]

Press

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (\hat{}) ((-)) 3 Enter</td>
<td>(2^{-3} = 0.125)</td>
</tr>
<tr>
<td>((-)) 2 (\hat{}) Enter</td>
<td>(-2^{-3} = -0.125)</td>
</tr>
<tr>
<td>((-)) 3 Enter</td>
<td>(.2^{-3} = 125)</td>
</tr>
<tr>
<td>1 (\hat{}) 2 (\hat{}) ((-)) 3 Enter</td>
<td>((1/2)^{-3})</td>
</tr>
</tbody>
</table>

Powers

- \(\hat{} \)
- \((-\))

Negative
Using powers of 10

1.3 \times 10^3 = ?

Press Display
1 \boxed{3} \boxed{\times} 1.3 \times 10^3 = \boxed{1300}

10 \boxed{\uparrow} 3 \boxed{\text{Enter}}

1.3 \times 10^{-3} = ?

Press Display
1 \boxed{3} \boxed{\times} 1.3 \times 10^{-3} = \boxed{0.0013}

10 \boxed{\uparrow} (-) 3 \boxed{\text{Enter}}
Problem Solving: Auto Mode

Keys
1. \(\bullet \) activates the Problem Solving tool.
 In Auto mode, this function provides a set of electronic exercises to challenge the student’s skills in addition, subtraction, multiplication, and division.

2. \(\bullet \) displays the menu to select mode, level of difficulty, and type of operation.

 | Mode: | Auto | Man (Manual) | | |
 | Level: | 1 | 2 | 3 |
 | Type: | + | - | \(\times \) | \(\div \) |

 Auto, Level 1, and Addition are the default mode settings.

Notes
- The examples assume all default settings.
- In Auto mode (default), the TI-15 presents problems with one element missing (for example 5+2=? or 5+?=7 or 5\(\times \)?=7).
- If the answer is not correct, the TI-15 displays “no” and gives a hint in the form of “<” or “>”.
- After you enter three incorrect answers, the TI-15 provides the correct answer.
- After every fifth problem, the TI-15 displays a Scoreboard that tallies the student’s correct and incorrect answers.
- Teachers can check a student’s progress at any time by pressing \(\bullet \) to display the Scoreboard. You can also press \(\bullet \) to review previous problems.
- In Problem Solving, you can view the history, but you cannot edit.
- To exit Problem Solving, press \(\bullet \) again. The Scoreboard is cleared when you exit.
Select level of difficulty

Choose the level of difficulty.

Problem Solving

Mode

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>ð Mode</td>
<td>Auto</td>
</tr>
<tr>
<td>‹</td>
<td>AUTO MAN</td>
</tr>
<tr>
<td>ð</td>
<td>Auto</td>
</tr>
<tr>
<td>‹</td>
<td>1 2 3</td>
</tr>
<tr>
<td>ð Enter</td>
<td>Auto</td>
</tr>
<tr>
<td>‹</td>
<td>1 2 3</td>
</tr>
<tr>
<td>ð (to exit)</td>
<td>Auto</td>
</tr>
<tr>
<td>‹</td>
<td>8 ÷ ? = 808</td>
</tr>
</tbody>
</table>
Select type of operation

Choose the type of operation:

- addition
- subtraction
- multiplication
- division
- find the operator

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Mode ➤</td>
<td>![Auto] Man</td>
</tr>
<tr>
<td>-</td>
<td>![Auto] 1 2 3</td>
</tr>
<tr>
<td>-</td>
<td>![Auto] + - x ÷ ?</td>
</tr>
<tr>
<td>➤ ➤ ➤ Enter ➤</td>
<td>![Auto] 4 x 1 = ?</td>
</tr>
</tbody>
</table>

(to exit)
Test your skills

Enter solutions to the problems that the calculator presents. (Problems are random.)

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>† Mode</td>
<td>Auto M\n MAN</td>
</tr>
<tr>
<td>Mode</td>
<td>Auto 8 ÷ 3 = ?</td>
</tr>
<tr>
<td>11 Enter</td>
<td>Auto 8 ÷ 3 = 11 YES</td>
</tr>
<tr>
<td>4 Enter</td>
<td>Auto 2 ÷ ? = 7</td>
</tr>
<tr>
<td>5 Enter</td>
<td>Auto 2 ÷ 4 < 7</td>
</tr>
<tr>
<td>5 Enter</td>
<td>Auto 2 ÷ 5 = 7 YES</td>
</tr>
</tbody>
</table>
View the Scoreboard

After every fifth problem, the calculator displays a scoreboard that tallies your right and wrong solutions.

You can also display the scoreboard at any time by pressing Mode.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>✡ Auto</td>
</tr>
<tr>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Find the operator

Change the type of operation to “find the operator” (?) and solve the problems the calculator presents.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>“Auto”</td>
</tr>
<tr>
<td>- - -</td>
<td>“Auto”</td>
</tr>
<tr>
<td>➔ ➔ ➔ ➔</td>
<td>“Auto”</td>
</tr>
<tr>
<td>Enter</td>
<td>“Auto”</td>
</tr>
<tr>
<td>Mode</td>
<td>$8 \times 6 = 48$</td>
</tr>
<tr>
<td>× Enter</td>
<td>“Auto”</td>
</tr>
<tr>
<td></td>
<td>$8 \times 6 = 48 \quad \text{YES}$</td>
</tr>
</tbody>
</table>
Problem Solving: Manual Mode

Keys
1. \(\text{ activates Problem Solving.} \)
2. \(\text{ displays the menu for selecting mode, level of difficulty, and type of operation.} \)
 Mode: Auto Man (Manual)
 Display: 11-\(-\) 1-\(-\).
 In Manual mode, the student composes his or her own problems.
3. \(\text{ lets the student indicate a missing element in Manual mode.} \)
4. \(\text{ lets the student test inequalities.} \)

Notes
- The examples on the transparency masters assume all default settings.
- Teachers can check a student’s progress at any time by pressing \(\text{ to display the Scoreboard.} \)
 You can also press \(\text{ to review previous problems.} \)
- When you first press \(\text{, the display shows the Scoreboard for a moment before showing the menu.} \)
- In Manual mode, for all operations except inequalities, the calculator accepts only integers.
- You can enter no more than 11 characters on the display.
- You can enter a problem that has one solution, multiple solutions, or no solution. For example:
 1 solution: 2+5=?, 2+?=7, 2?5=7
 0 solutions: 3\(P \)2=\
 (Answer is not an integer.)
- When a problem has no solution, the calculator will display “no” and will continue to present the problem until cleared manually.
- Problems with two missing elements may have multiple solutions. (\(\times x=24 \) has 8 solutions.) They must be in the form of \(\text{operator}?=\text{number.} \)
- In Problem Solving, you can view the history, but you cannot edit.
- To exit Problem Solving, press \(\).
Problems with one solution

Problems with one solution are equations with one missing element (for example 7+2=? or 7+?=9). Enter a problem and find a solution.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>‡ Mode</td>
<td>Auto MAN</td>
</tr>
<tr>
<td>‡ Enter</td>
<td></td>
</tr>
<tr>
<td>? Enter</td>
<td></td>
</tr>
<tr>
<td>5 3 Enter</td>
<td></td>
</tr>
<tr>
<td>? Enter</td>
<td></td>
</tr>
<tr>
<td>2 Enter</td>
<td></td>
</tr>
<tr>
<td>5 + ? Enter</td>
<td></td>
</tr>
<tr>
<td>9 Enter</td>
<td></td>
</tr>
<tr>
<td>3 Enter</td>
<td></td>
</tr>
<tr>
<td>4 Enter</td>
<td></td>
</tr>
</tbody>
</table>

Problem Solving

Mode

Missing element

???
Problems with more than one solution

Problems with two missing elements may have more than one solution. Enter a problem, find the number of solutions, and then find a solution.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>◇ Mode</td>
<td>Auto</td>
</tr>
<tr>
<td>Enter</td>
<td>AUTO MAN</td>
</tr>
<tr>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>? + ? ?</td>
<td></td>
</tr>
<tr>
<td>Enter 3 Enter</td>
<td></td>
</tr>
<tr>
<td>2 Enter</td>
<td></td>
</tr>
<tr>
<td>1 Enter</td>
<td></td>
</tr>
</tbody>
</table>

Problem Solving

Mode

Missing element

?
Problems with no solution

The TI-15 calculator is not designed to handle certain types of problems. These will result in a 0 SOL (no solution) response from the calculator.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>◆ (Mode)</td>
<td>Auto</td>
</tr>
<tr>
<td>Enter</td>
<td>MAN</td>
</tr>
<tr>
<td>◆ (Mode)</td>
<td>?</td>
</tr>
<tr>
<td>1 ÷ 2 Enter</td>
<td>1 - 2 = 0</td>
</tr>
<tr>
<td>? Enter</td>
<td>0 SOL</td>
</tr>
<tr>
<td>Clear</td>
<td></td>
</tr>
</tbody>
</table>

Problem Solving

◆ Mode

Missing element

?
Less than, greater than, equals

You can test inequalities and equalities using Problem Solving.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Auto MAN</td>
</tr>
<tr>
<td>Enter</td>
<td>2 + 1 = 1 + 2 YES</td>
</tr>
<tr>
<td>Mode</td>
<td>5 + 4 < 10 YES</td>
</tr>
<tr>
<td>2 + 1 Enter</td>
<td>.5 > .50 NO</td>
</tr>
<tr>
<td>5 + 4 < 10 Enter</td>
<td>.5 = .50 YES</td>
</tr>
</tbody>
</table>

Problem Solving

Mode

Equals

Greater Than, Less Than

< >
View Scoreboard

After every fifth problem, the calculator displays a scoreboard that tallies your right and wrong solutions.

You can also display the scoreboard at any time by pressing \(\text{Mode} \).

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Mode})</td>
<td>*</td>
</tr>
</tbody>
</table>
Place Value

Keys

1. \bigcirc activates Problem Solving.

2. \bigtriangleup lets you set the mode and display option for Place Value.

 Mode: Auto Man (Manual)
 Display: 11- -1-

 Example:
 Enter 1234.56
 Press \bigcirc 10 123_._ _ (using 11-)
 _ _ _ _ _ (using -1-)

3. \bigtriangledown activates the place value function in Manual mode. It also works in conjunction with these keys:

Key	Displays
 1000 | Number of thousands
 100 | Number of hundreds
 10 | Number of tens
 1 | Number of ones
 0.1 | Number of tenths
 0.01 | Number of hundredths
 0.001 | Number of thousandths

 Example:
 Enter 123.456
 Press \bigcirc 4 _ _ _ _ _
 4 \rightarrow .01

Notes

- The examples on the transparency masters assume all default settings.
- The Place Value features work only if you are in Problem Solving Manual mode.
- To exit Problem Solving completely, press \bigcirc.
Place Value

How to Use the Place Value Function

When you use the place value function, you can determine the place value of a specific digit OR the number of ones, tens, hundreds, etc. in a given number.

- The \(\diamond \) mode setting must be Manual and the display option \(11^-\).

<table>
<thead>
<tr>
<th>To determine:</th>
<th>Follow these steps:</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place Value</td>
<td>Enter the number, press (\square), and press the digit.</td>
<td>Page 108</td>
</tr>
<tr>
<td>How Many?</td>
<td>Enter the number, press (\square), and press (1, 10, 100, 1000,), or (0.01).</td>
<td>Page 110</td>
</tr>
</tbody>
</table>

- When determining How Many?, be sure to explain to students that \(12__ \cdot ___ \) (after you press \(100 \) on page 110) represents 12 hundreds in the number 1234.567, or that \(123456 \cdot _ \) (after you press \(0.01 \)) represents 123,456 hundredths in the number 1234.567.

- When a number includes a repeated digit, the calculator first analyzes its occurrence in the right-most position. To find the place value of other instances, press the digit again. (See page 109 for an example.)

- Once \(\diamond \) is active, it is not necessary to press this key before each digit. To enter a new number, however, you must press \(\bigcirc \), enter the number, and then press \(\diamond \) again.

- To exit Place Value, press \(\bigcirc \) and the TI-15 returns to Problem Solving, Manual mode.

How to Use What’s the Digit Function

Another way to display place value is to show the digit that is in the ones place, the tens place, etc.

- The \(\diamond \) mode setting must be Manual and the display option \(-1^-\).

<table>
<thead>
<tr>
<th>To determine:</th>
<th>Follow these steps:</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>What’s the Digit?</td>
<td>Enter the number, press (\square), and press (1, 10, 100, 1000,), or (0.01).</td>
<td>Page 111</td>
</tr>
</tbody>
</table>

- To exit Place Value, press \(\bigcirc \) and the TI-15 returns to Problem Solving, Manual mode.
Determine place value

Enter 1234.567. Determine the place value of 7 and 4.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Mode]</td>
<td>AUTO MAN</td>
</tr>
<tr>
<td>Enter</td>
<td>7</td>
</tr>
<tr>
<td>1234[+]567</td>
<td>1234.567</td>
</tr>
<tr>
<td>7</td>
<td>1234.567</td>
</tr>
<tr>
<td>4</td>
<td>1234.567</td>
</tr>
</tbody>
</table>

Problem Solving

Place Value
Repeated digits

Enter 123.43. Determine the place value of each 3.

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>◦ Mode ➔</td>
<td>AUTO MAN</td>
</tr>
<tr>
<td>Enter ◦ Mode</td>
<td>4</td>
</tr>
<tr>
<td>123 ■ 43</td>
<td>123.43</td>
</tr>
<tr>
<td>■ 3</td>
<td>123.43</td>
</tr>
<tr>
<td>■ 33</td>
<td>123.43</td>
</tr>
</tbody>
</table>

Problem Solving

Place Value

© 2000 Texas Instruments Incorporated

TI-15: A Guide for Teachers
How many?

How many hundreds are in 1234.567? How many hundredths?

Problem Solving

Place Value

Hundreds

100.

Hundredths

0.01

Press	Display
.Mode | AUTO MAN
Enter |
Mode | 1234.567
100. | 1234.567
0.01 | 1234.567
What’s the digit?

What digit is in the hundreds place in 1234.567?

Problem Solving

Place Value

<table>
<thead>
<tr>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>›nbsp;Mode ›</td>
<td>AUTO MAN</td>
</tr>
<tr>
<td>➤Enter</td>
<td></td>
</tr>
<tr>
<td>➤</td>
<td>11. -1-</td>
</tr>
<tr>
<td>◆Mode</td>
<td></td>
</tr>
<tr>
<td>1234.567</td>
<td>1234.567</td>
</tr>
<tr>
<td>0.1</td>
<td>1234.567</td>
</tr>
<tr>
<td>100.</td>
<td>1234.567</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

© 2000 Texas Instruments Incorporated

TI-15: A Guide for Teachers

111
Quick Reference to Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>«</td>
<td>Turns on the calculator. If already on, turns the calculator off.</td>
</tr>
<tr>
<td>◼</td>
<td>Clears display and error condition.</td>
</tr>
<tr>
<td>◼◼</td>
<td>To reset the calculator, hold down « and ◼ simultaneously for a few seconds and release. MEM CLEARED shows on the display. This will completely clear the calculator, including all mode menu settings, all previous entries in history, all values in memory, and the display. All default settings will be restored.</td>
</tr>
<tr>
<td>→ ←</td>
<td>Moves the cursor right and left, respectively, so you can scroll the entry line or select a menu item.</td>
</tr>
<tr>
<td>← →</td>
<td>Moves the cursor up and down, respectively, so you can see previous entries or access menu lists.</td>
</tr>
<tr>
<td>←</td>
<td>Deletes the character to the left of the cursor before Enter is pressed.</td>
</tr>
<tr>
<td>Mode</td>
<td>Displays menu to select format of results of division: . n/d</td>
</tr>
<tr>
<td>Mode ←</td>
<td>Displays menu to show or hide (?) in Op1 or Op 2: +1 Op ?</td>
</tr>
<tr>
<td>Mode ← ←</td>
<td>Displays menu to clear Op1 or Op2: Op1 Clear Op2</td>
</tr>
<tr>
<td>Mode ← ← ←</td>
<td>Displays menu to reject or accept Reset: N Y</td>
</tr>
<tr>
<td>0 1 2 3 4 5</td>
<td>Enters the numerals 0 through 9.</td>
</tr>
<tr>
<td>6 7 8 9</td>
<td>Adds.</td>
</tr>
<tr>
<td>+</td>
<td>Subtracts.</td>
</tr>
<tr>
<td>−</td>
<td>Multiplies.</td>
</tr>
<tr>
<td>×</td>
<td>Divides.</td>
</tr>
<tr>
<td>÷</td>
<td>Completes operations. Enters the equal sign or tests a solution in Problem Solving.</td>
</tr>
<tr>
<td>«</td>
<td>Inserts a decimal point.</td>
</tr>
<tr>
<td>‹</td>
<td>Enters a negative sign. Does not act as an operator.</td>
</tr>
<tr>
<td>(</td>
<td>Opens a parenthetical expression.</td>
</tr>
<tr>
<td>)</td>
<td>Closes a parenthetical expression.</td>
</tr>
</tbody>
</table>
Quick Reference to Keys (Continued)

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>int-</td>
<td>When you divide a positive whole number by a positive whole number using int-, the result is displayed in the form $Q \times R$, where Q is the quotient and R is the remainder. If you use the result of integer division in a subsequent calculation, only the quotient is used; the remainder is dropped.</td>
</tr>
<tr>
<td>$\bar{}$</td>
<td>When pressed after entering a number, designates the numerator of a fraction. The numerator must be an integer. To negate a fraction, press $\bar{}$ before entering numerator.</td>
</tr>
<tr>
<td>$\bar{}$</td>
<td>When pressed after entering a number, designates the denominator of a fraction. The denominator of a fraction must be a positive integer in the range 1 through 1000. If you perform a calculation with a fraction having a denominator greater than 1000, or if the results of a calculation yield a denominator greater than 1000, the TI-15 will convert and display the results in decimal format.</td>
</tr>
<tr>
<td>Unit</td>
<td>Separates a whole number from the fraction in a mixed number.</td>
</tr>
</tbody>
</table>
| Frac | Displays a menu of settings that determine how fraction results are displayed.
- $U\ n/d$ (default) displays mixed number results.
- n/d displays results as a simple (improper) fraction.

If $N/d \rightarrow n/d$ is displayed after you convert a fraction to a mixed number, you can further simplify the fractional portion of the mixed number. |
| Frac \rightarrow | Displays a menu to select the method of simplifying fractions:
- Man (default) allows you to simplify manually (step-by-step).
- $Auto$ automatically reduces fraction results to lowest terms. |
| Simp | Enables you to simplify a fraction. |
| Fac | Displays the factor that was used to simplify a fraction. |
| \rightarrow | Converts a mixed number to an improper fraction or an improper fraction to a mixed number. |
| \leftrightarrow | Converts a fraction to a decimal, or converts a decimal to a fraction, if possible. Converts π to a decimal value. |
| % | Enters a percentage. |
Quick Reference to Keys (Continued)

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤%</td>
<td>Converts a decimal or a fraction to a percent.</td>
</tr>
<tr>
<td>√</td>
<td>Calculates the square root of a number.</td>
</tr>
<tr>
<td>^</td>
<td>Raises a number to the power you specify.</td>
</tr>
<tr>
<td>π</td>
<td>Enters the value of π. It is stored internally to 13 decimal places (3.141592653590). In some cases, results display with symbolic π, and in other cases as a numeric value.</td>
</tr>
<tr>
<td>M</td>
<td>Stores the displayed value for later use. If there is already a value in memory, the new one will replace it. When memory contains a value other than 0, M displays on the screen. (Will not work while a calculation is in process.)</td>
</tr>
<tr>
<td>MR/MC</td>
<td>Recalls the memory value for use in a calculation when pressed once. When pressed twice, clears memory.</td>
</tr>
</tbody>
</table>
| Op1 | Each can store one or more operations with constant value(s), which can be repeated by pressing only one key, as many times as desired. To store an operation to Op1 or Op2 and recall it:
- Press Op1 (or Op2), enter the operator and the value, and press Op1 (or Op2) to save the operation.
- Press Op1 (or Op2) to recall the stored operation.
To clear the contents of Op1 or Op2, press Mode, select Op1 or Op2, and press Enter. New operations can now be stored for repeated use. |
| Fix 1000 | Rounds off results to the nearest thousand. |
| Fix 100 | Rounds off results to the nearest hundred. |
| Fix 10 | Rounds off results to the nearest ten. |
| Fix 1 | Rounds off results to the nearest one. |
| Fix 0.1 | Rounds off results to the nearest tenth. |
| Fix 0.01 | Rounds off results to the nearest hundredth. |
| Fix 0.001 | Rounds off results to the nearest thousandth. |
| Fix 0 | Removes fixed-decimal setting and returns to floating decimal. |
Quick Reference to Keys (Continued)

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>‹</td>
<td>Provides a set of electronic flash cards to challenge your skills in addition, subtraction, multiplication, and division.</td>
</tr>
<tr>
<td>‹‡</td>
<td>Displays menu list to select Auto or Manual operation: Auto Man</td>
</tr>
<tr>
<td>‹‡$</td>
<td>Displays menu list to select level of difficulty: 1 2 3</td>
</tr>
<tr>
<td>‹‡$$</td>
<td>Displays menu list to select type of problem: + - × ÷ ?</td>
</tr>
<tr>
<td>‹‡$$</td>
<td>Displays menu to select display options for Place Value: 11-. -1-.</td>
</tr>
<tr>
<td>(This option available only if Man mode is selected.)</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>While in ‹ function, manual problem solving mode, lets you indicate a missing element in an equation.</td>
</tr>
<tr>
<td>≥</td>
<td>While in the ≥ function, manual problem solving mode, lets you test inequalities. Press once to enter <. Press twice to enter >.</td>
</tr>
<tr>
<td></td>
<td>While in function, you can determine the place value of a particular digit of given number or, in conjunction with place value keys, can determine how many thousands, hundreds, etc., a number contains or what digit is in a given place.</td>
</tr>
<tr>
<td>d</td>
<td>Determines the place value of digit d of given number.</td>
</tr>
<tr>
<td>1000.</td>
<td>Tells how many thousands a given number contains or what digit is in the thousands place.</td>
</tr>
<tr>
<td>100.</td>
<td>Tells how many hundreds a given number contains or what digit is in the hundreds place.</td>
</tr>
<tr>
<td>10.</td>
<td>Tells how many tens a given number contains or what digit is in the tens place.</td>
</tr>
<tr>
<td>l</td>
<td>Tells how many ones a given number contains or what digit is in the ones place.</td>
</tr>
<tr>
<td>01</td>
<td>Tells how many tenths a given number contains or what digit is in the tenths place.</td>
</tr>
<tr>
<td>0.01</td>
<td>Tells how many hundredths a given number contains or what digit is in the hundredths place.</td>
</tr>
<tr>
<td>0.001</td>
<td>Tells how many thousandths a given number contains or what digit is in the thousandths place.</td>
</tr>
<tr>
<td>Indicator</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>◊</td>
<td>Calculator is in Problem Solving mode.</td>
</tr>
<tr>
<td>‹</td>
<td>Calculator is in place-value mode.</td>
</tr>
<tr>
<td>Fix</td>
<td>The calculator is rounding to a specified number of places.</td>
</tr>
<tr>
<td>M</td>
<td>Indicates that a value other than zero is in memory.</td>
</tr>
<tr>
<td>▶M</td>
<td>Value is being stored to memory. You must press Ï, Ï, Ï, Ï, or Enter to complete the process.</td>
</tr>
<tr>
<td>Op1, Op2</td>
<td>An operator and operand is stored.</td>
</tr>
<tr>
<td>Auto</td>
<td>In calculator mode, Auto simplification of fractions to lowest terms is selected. In ◊, Problem Solving function is in Auto mode.</td>
</tr>
<tr>
<td>I</td>
<td>Integer division function has been selected (appears only when cursor is over division sign).</td>
</tr>
<tr>
<td>n/d ÷</td>
<td>Division results will be displayed as fractions.</td>
</tr>
<tr>
<td>N//d→n/d</td>
<td>The fraction result can be further simplified.</td>
</tr>
<tr>
<td>↑</td>
<td>Previous entries are stored in history, or more menus are available. Press ← to access history. Press ← and → to access additional menu lists.</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>← →</td>
<td>You can press ← and → to scroll and select from a menu. You must press Enter to complete the selection process.</td>
</tr>
</tbody>
</table>
Error Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith Error</td>
<td>Arithmetical error. You entered an invalid entry or an invalid parameter; for example, $\sqrt{5}$.</td>
</tr>
<tr>
<td>Syn Error</td>
<td>Syntax error. You entered an invalid or incorrect equation; for example, $5++2$ or missing parenthesis.</td>
</tr>
<tr>
<td>÷ 0 Error</td>
<td>Divide by 0 error. You attempted to divide by 0.</td>
</tr>
<tr>
<td>Op Error</td>
<td>Error following steps for using Op1 or Op2.</td>
</tr>
<tr>
<td>Overflow Error</td>
<td>Overflow. The result is too large to fit within the boundaries of the display.</td>
</tr>
<tr>
<td>Underflow Error</td>
<td>Underflow. Result is too small.</td>
</tr>
</tbody>
</table>
Support, Service, and Warranty

Product Support

Customers in the U.S., Canada, Puerto Rico, and the Virgin Islands
For general questions, contact Texas Instruments Customer Support:
- **phone:** 1-800-TI-CARES (1-800-842-2737)
- **e-mail:** ti-cares@ti.com
For technical questions, call the Programming Assistance Group of Customer Support:
- **phone:** 1-972-917-8324

Customers outside the U.S., Canada, Puerto Rico, and the Virgin Islands
Contact TI by e-mail or visit the TI Calculator home page on the World Wide Web.
- **e-mail:** ti-cares@ti.com
- **Internet:** www.ti.com/calc

Product Service

Customers in the U.S. and Canada Only
Always contact Texas Instruments Customer Support before returning a product for service.

All Customers outside the U.S. and Canada
Refer to the leaflet enclosed with this product or contact your local Texas Instruments retailer/distributor.

Other TI Products and Services

Visit the TI calculator home page on the World Wide Web.
- [www.ti.com(calc)](http://www.ti.com/calc)
Warranty Information

Customers in the U.S. and Canada Only

One-Year Limited Warranty for Commercial Electronic Product
This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.

Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.

Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.

Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality (at TI’s option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided “AS IS.”

Copyright. The software and any documentation supplied with this product are protected by copyright.

All Customers outside the U.S. and Canada
For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.